

· · · ·

.

.

USEFUL INFORMATION

FOR

Architects, Engineers,

AND

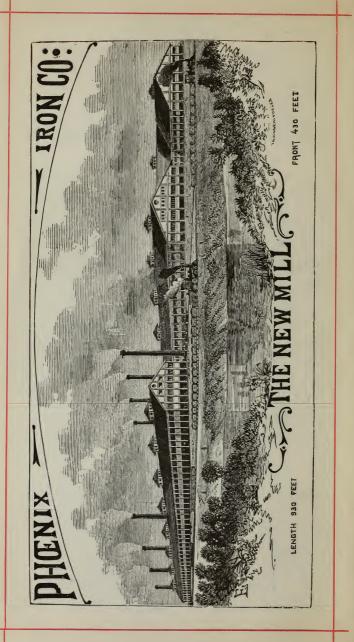
WORKERS IN WROUGHT IRON,

BY THE

PHŒNIX IRON COMPANY.

OFFICE,

410 WALNUT STREET, PHILADELPHIA.


WORKS,

PHŒNIXVILLE, PA.

REVISED EDITION, 1886.

COPYRIGHT, 1885, BY PHŒNIX IRON COMPANY.

PRINTED BY J. B. LIPPINCOTT COMPANY, PHILADELPHIA.

THE

PHŒNIX IRON COMPANY

410 WALNUT ST., PHILADELPHIA,

MANUFACTURERS OF

WROUGHT IRON ROOF TRUSSES,

EITHER CURVED, STRAIGHT, OR HIPPED. ALSO,

WROUGHT IRON PURLINS AND JACK RAFTERS,

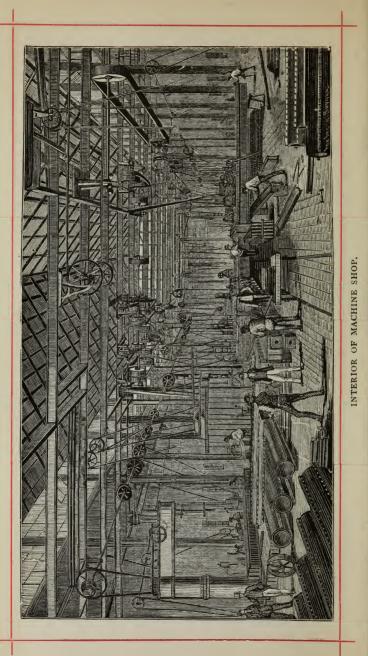
ARRANGED TO SUIT SHEET IF.ON OR SLATE COVERING.

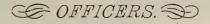
LINKS,

TO FORM BOTTOM CHORDS FOR BRIDGES, OF ANY SIZE OR LENGTH, MADE WITHOUT WELDING.

PATENT WROUGHT IRON COLUMNS

FOR TOP CHORDS OR POSTS OF BRIDGES OR PIERS, DEPOTS, FACTORIES, ETC.


ALL PARTS OF


Bridges or Fire Proof Floors and Roofs

MADE AND FITTED TO SUIT DESIGNS OF ENGINEERS AND ARCHITECTS.

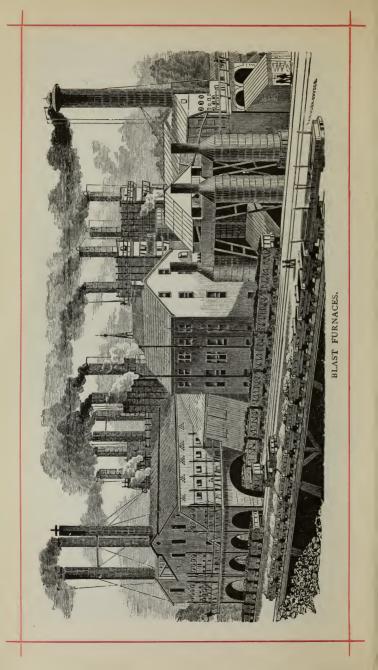
BEAMS, ANGLES, T AND SHAPE IRON,

REFINED BARS, ETC.

DAVID REEVES, President, GEORGE GERRY WHITE, Secretary, JAMES O. PEASE, Treasurer,

PHILADELPHIA.

W. H. REEVES, General Superintendent,AMORY COFFIN, Chief Engineer,R. H. DAVIES, Master Mechanic,


PHŒNIXVILLE.

Correspondents will please address

PHŒNIX IRON COMPANY,

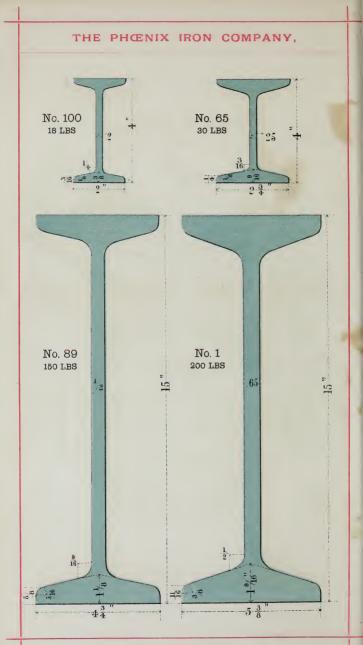
410 Walnut Street,

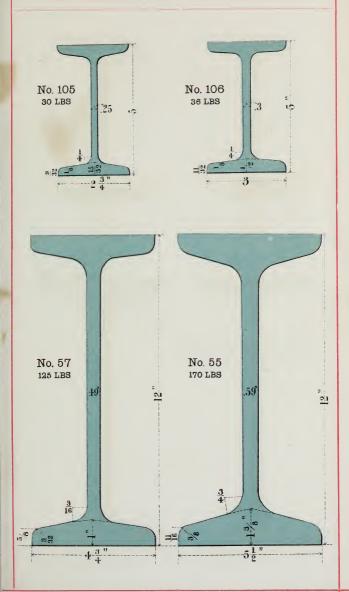
PHILADELPHIA.

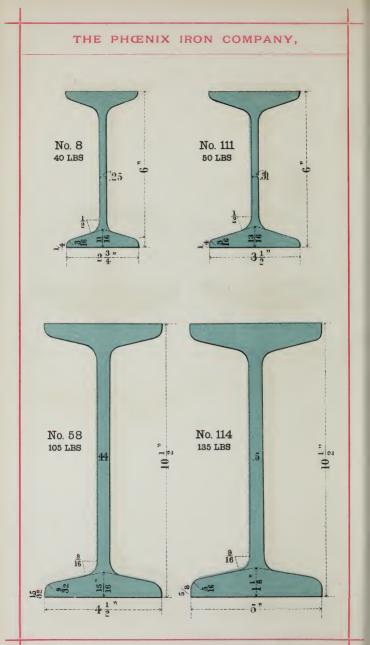
CONTENTS.

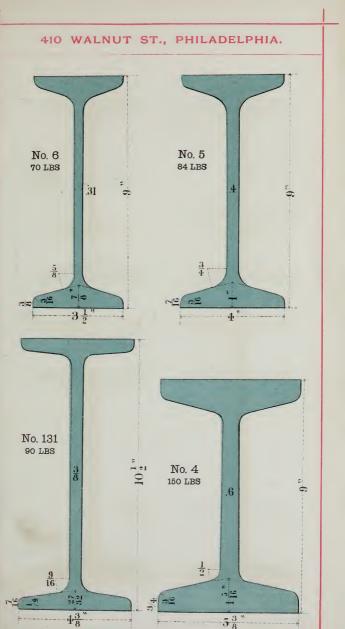
													INGE
Air, notes on		•		•		•		•		•		•	125
Angle brackets	•		•		•		•		•		•		86
Angle iron, price-list .		•		•		•		•		•		•	48
properties of	•		•		•		•		•		•		64
Arches of floors		•				•		•		•		•	90
Areas of circles	•		•		•		•		•		•		155
Avoirdupois weight		•		•		•		•		•		•	159
Bar iron, price-list .	•		•		•								43
sizes of						•				•		•	42
properties of			•				•		•		•		60
weight of		•						•				•	128
Beams, deck, price-list.	•						•				•		45
I, as floor joists .								•					85
details of construction					•								90
elements of													75
girders											•		126
price-list													44
properties of													61
table for spacing .													40
tables of strength and st	tiff	ne	SS										78
Bearing values of rivets .													59
Bending moments of pins													58
Boiler tubes, tables of .								•					143
Bolts, tables of													141
Bracing of roofs													112
Brackets, angle													86
Brass, weight of													136
Bricks, hollow													92
Cast-iron pipes, weight of										• .			133
Channel iron) price-list						-		-		14	15		46
properties of													62
Circles, areas of													155
circumferences of .													154
properties of													148
Cisterns, capacity of .													145
Colors of iron caused by he	at												124
Columns, cast and wrought													96
fire-proofing													95

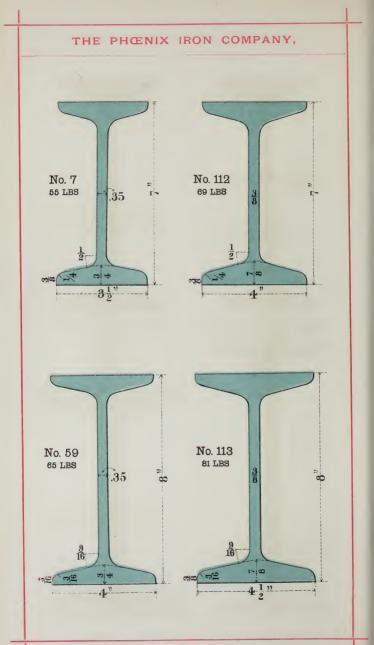
THE PHOENIX IRON COMPANY,

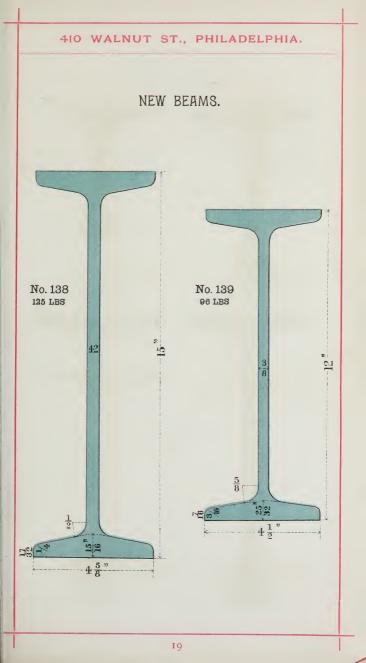

										PAGE
Columns, formulæ for										98
price-list .										52
tables of sizes .										100
Comparative strength of	be	am	IS							72
columns										98
Compound Girders .										88
Copper, weight of .										136
Corrugated iron										1 34
Cubic measure										158
Deck beams, price-list .								•		45
Deflexion, formulæ for										76
Diagram for I beams .										40
Dies, list of										54
Diminution of tenacity o	f w	ro	ug	ht	iro	n				I22
Elasticity, modulus of										118
Elements of beams .										75
Equivalents, trigonometr	ical	l								151
Eye bars, list of dies for										54
proportions of .										104
Fire-proofing columns .										95
Flagging										145
Floor glass										145
Floors										69
Formulæ for columns .										98
deflexion										76
strength of beams.										74
French measures .										156
Galvanized iron										134
Gas-pipe										142
Gauges, wire										135
Girders, beam										126
compound										88
Glass, sizes of										I44
Gravity, specific										147
Hollow Bricks										92
Kirkaldy's conclusions.										119
Lead, weight of .										136
Linear expansion of met	als									123
List of dies										54
Long measure										156
Machine-shop roofs .										112

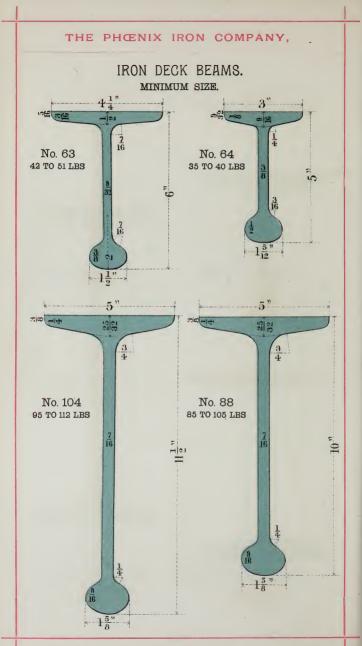

								1	PAGE
Mansard roofs									108
Melting point of metals .									124
Miscellaneous shapes .									51
Modulus of elasticity .									118
Nails, sizes and weights									139
Natural sines, etc., table .									152
Nuts, tables of sizes .									140
Phœnix columns, price-list									52
tables of sizes									100
tests of									116
Pins, proportions of .									104
Pipe, weight of cast-iron .									133
Price-list, angles									48
bar iron									42
beams, deck .									45
beams, I									44
channels								-	46
miscellaneous shapes.				. 1					51
Phœnix columns .									52
T bars									47
Properties of circles .									148
iron									119
triangles									150
Purlins									106
Railroad spikes and splices									135
Rails, weight per mile .									135
Rivets, table of weights									138
shearing and bearing, v	valu	ıes	of						59
Roofs, bracing of									112
general details									102
machine-shop .									112
Mansard									108
Rules for weight of iron									132
Screw ends, upset, sizes of									55
Separators and bolts, tables	of								86
Shearing values of rivets .									59
Sines, table of natural .									153
Skew-backs									104
Slate, sizes of									146
Spacing of beams									40
Specific gravity									147

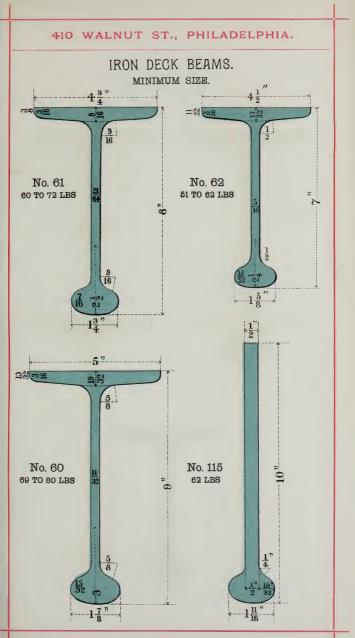

THE PHOENIX IRON COMPANY.

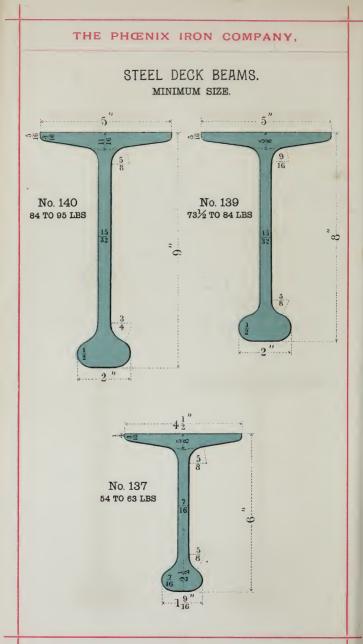

PAGE
Specifications of quality
Splices and bolts
Square measure
Strength of beams
Surveying measure
Tables of beams. I. Elements of
II. Strength of
III. Spacing
Table of bolts .
cast-iron pipe
glass
nails and tacks
nuts
rivets
round and square iron
sizes of columns
spacing of beams
strength of beams
strength of columns
washers
weight of bar iron
weight of wire
T bars, price-list
properties of
Tension, notes on
Tests of beams
columns
Triangles, properties of
Trigonometrical equivalents
Upset screw ends
Washers, table of
Weight of bar iron
brackets and fittings
brass, copper, and lead
round and square iron
separators and bolts
various substances
wire
Wight's fire-proofing for columns
Wire gauges
Wrought-iron columns

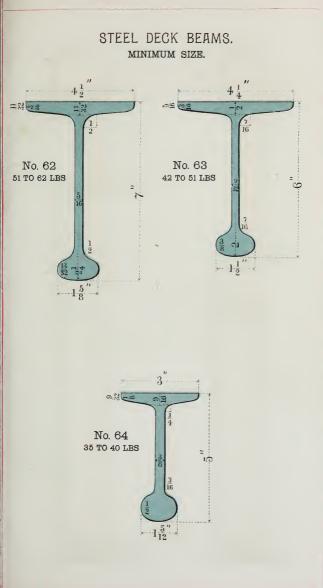


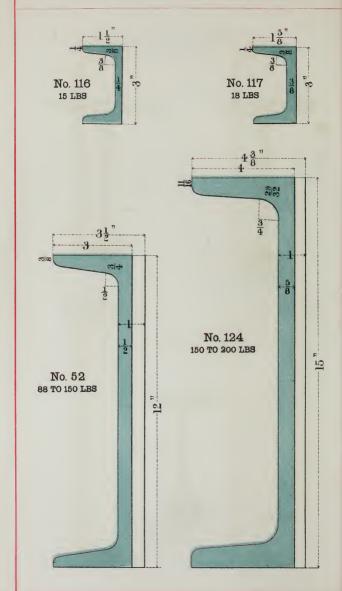


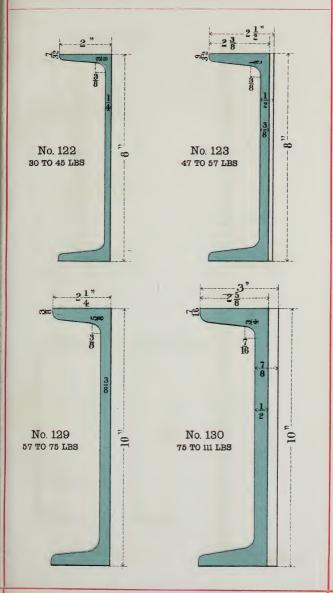


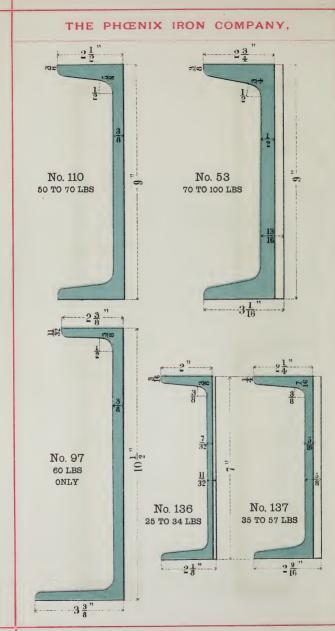


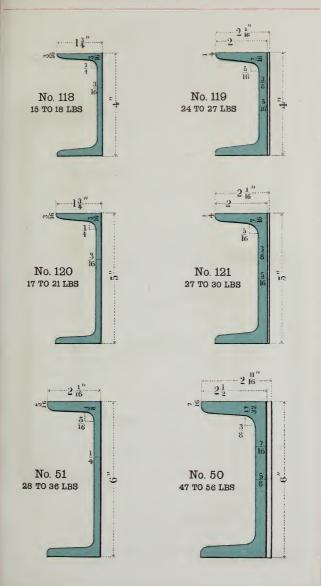

2*

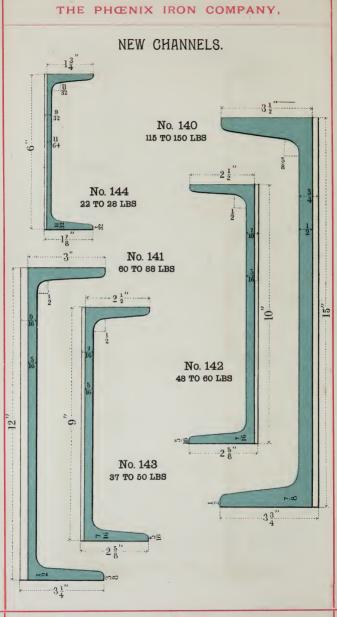


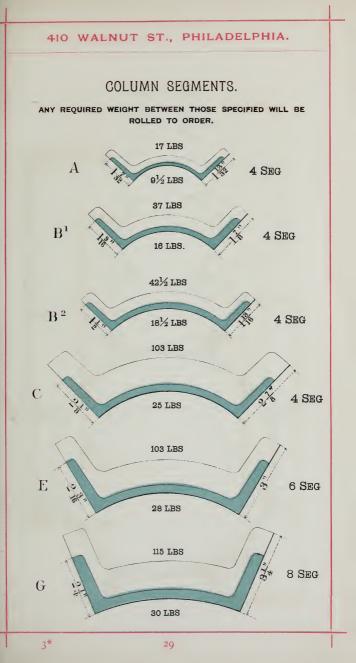


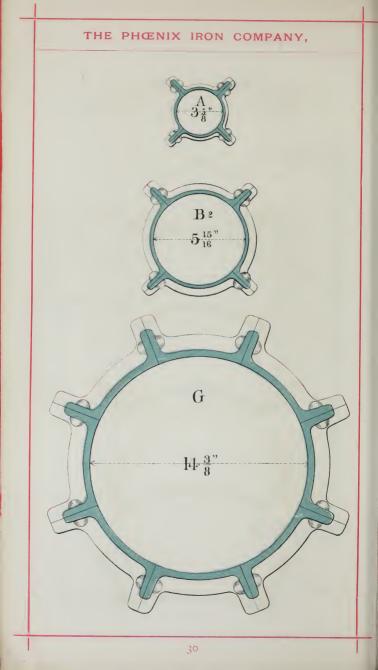


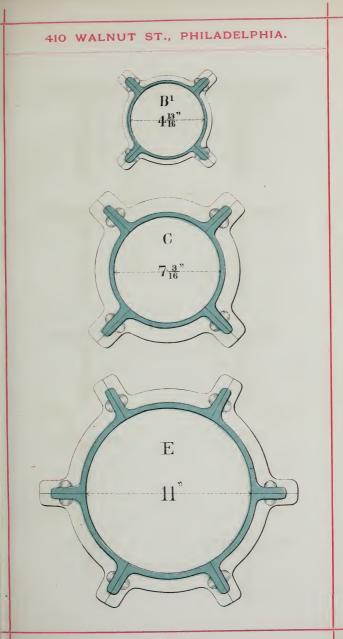



THE PHOENIX IRON COMPANY,

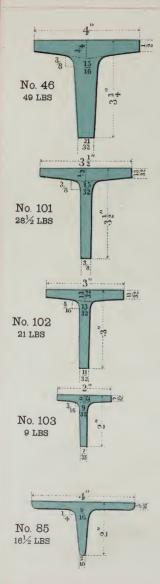


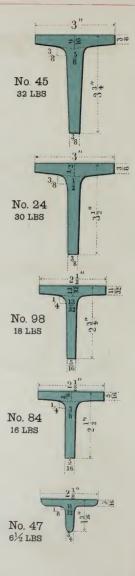

3

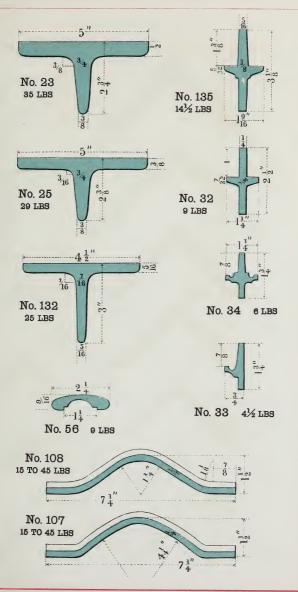


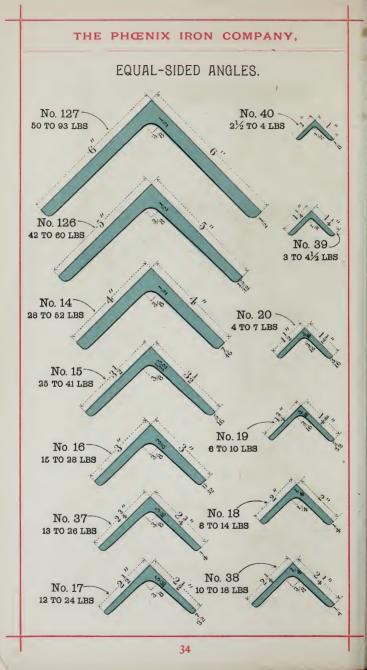


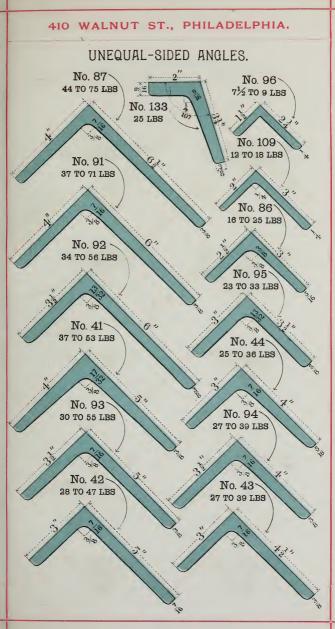
27

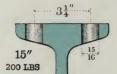


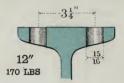


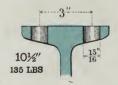


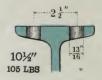


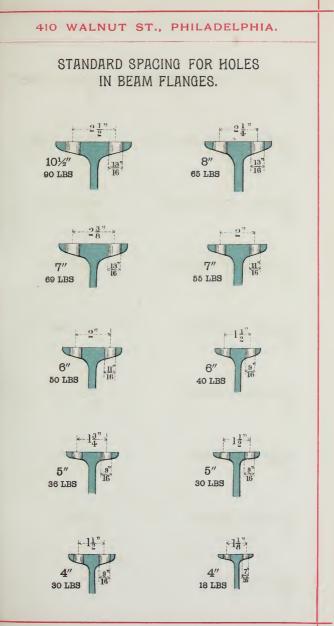

THE PHOENIX IRON COMPANY,






STANDARD SPACING FOR HOLES IN BEAM FLANGES.





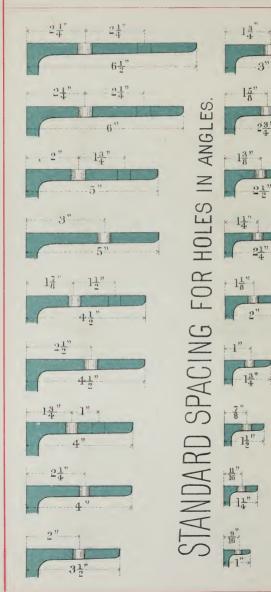
3**

3"

- 23"

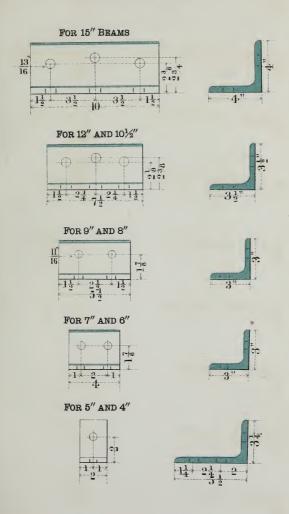
01"

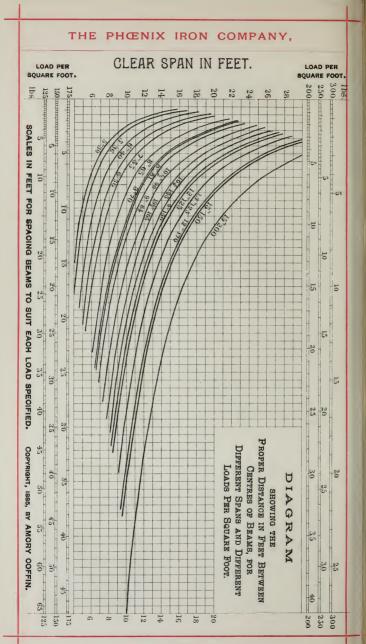
 $2\frac{1''}{4}$,


 $-1\frac{3}{8}$ "

 $1\frac{1}{8}$

-- 13"


님


 $l_{\frac{1}{4}}^{1}$

STANDARD BRACKETS.

Price Current.

SUBJECT TO CHANGES OF MARKET

WITHOUT NOTICE.

NOTE CONCERNING SHAPE IRON.

If any particular dimension is specially desired, attention must be directed to it when ordering, as slight alterations of patterns may occasionally be made in the rolls.

SIZES OF PHŒNIX BAR IRON.

ROUNDS.

 $\begin{array}{c} \frac{5}{16}, \frac{3}{6}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{1}{16}, \frac{3}{4}, \frac{1}{16}, \frac{7}{6}, \frac{1}{15}, 1, 1\frac{1}{8}, 1\frac{1}{4}, 1\frac{3}{8}, 1\frac{1}{2}, 1\frac{5}{8}, \\ 1\frac{3}{4}, 1\frac{7}{8}, 2, 2\frac{1}{8}, 2\frac{1}{4}, 2\frac{3}{8}, 2\frac{1}{2}, 2\frac{5}{8}, 2\frac{3}{4}, 2\frac{7}{8}, 3, 3\frac{1}{8}, 3\frac{1}{4}, 3\frac{3}{8}, 3\frac{1}{2}, \\ 3\frac{5}{8}, 3\frac{3}{4}, 3\frac{7}{8}, 4, 4\frac{1}{4}, 4\frac{1}{2}, 4\frac{3}{4}, 5, 5\frac{1}{4}, 5\frac{1}{2}, 5\frac{3}{4}, 6, 6\frac{1}{4}, 6\frac{1}{2}, 6\frac{3}{4}, 7. \end{array}$

SQUARES.

 $\begin{array}{c} \frac{5}{16}, \ \frac{3}{8}, \ \frac{7}{16}, \ \frac{1}{2}, \ \frac{9}{16}, \ \frac{5}{8}, \ \frac{11}{16}, \ \frac{3}{4}, \ \frac{13}{16}, \ \frac{7}{5}, \ \frac{15}{16}, \ 1, \ I \frac{1}{16}, \ I \frac{1}{8}, \ I \frac{3}{16}, \ I \frac{1}{4}, \ I \frac{3}{8}, \ I \frac{1}{4}, \ I \frac{3}{8}, \ I \frac{1}{4}, \ I \frac{3}{8}, \ I \frac{3}{4}, \ I \frac{3}{8}, \ 2 \frac{1}{4}, \ 2 \frac{3}{8}, \ 2 \frac{1}{2}, \ 2 \frac{5}{8}, \ 2 \frac{3}{4}, \ 3, \ 3 \frac{1}{4}, \ 3 \frac{1}{2}, \ 3 \frac{3}{4}, \ 4, \ 4 \frac{1}{4}, \ 4 \frac{1}{2}, \ 4 \frac{3}{4}, \ 5. \end{array}$

FLATS.

Width in Inches.	Thickness in Inches.	Width in Inches.	Thickness in Inches.
Width in Inches.	Min. Max. $\frac{1}{5}$ to $\frac{5}{500}$ $\frac{1}{5}$ to $\frac{3}{4}$ $\frac{1}{5}$ to $\frac{3}{4}$ $\frac{1}{5}$ to $\frac{1}{75}$ $\frac{1}{5}$ to $\frac{1}{4}$ $\frac{1}{4}$ to $\frac{1}{50}$ $\frac{1}{50}$ $\frac{1}{50}$ $\frac{1}{50}$ $\frac{1}{50}$ $\frac{1}{50}$	with in inches. i $ \begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 5 \\ 5 \\ 2 \\ 6 \\ 6 \\ 2 \\ 7 \\ 7 \\ 2 \\ 8 \\ 9 \\ \end{array} $	Min. Max. $\frac{1}{4}$ to $3\frac{1}{2}$ $\frac{1}{4}$ to $3\frac{1}{2}$ $\frac{1}{4}$ to $4\frac{1}{2}$ $\frac{1}{4}$ to $4\frac{1}{2}$ $\frac{1}{4}$ to $4\frac{1}{2}$ $\frac{1}{4}$ to $2\frac{1}{2}$ $\frac{1}{4}$ to $2\frac{1}{4}$
$\begin{array}{c} 3\\ 3^{\frac{1}{4}}\\ 3^{\frac{1}{2}}\\ 3^{\frac{3}{4}}\\ 3^{\frac{3}{4}}\end{array}$	$ \begin{array}{c} \frac{1}{4} \text{ to } 2\frac{1}{2} \\ \frac{1}{4} \text{ to } 2\frac{3}{4} \\ \frac{1}{4} \text{ to } 3 \\ \frac{1}{4} \text{ to } 3\frac{1}{4} \end{array} $	10 11 12	$\frac{1}{4} \text{ to } \mathbf{I}_{4}^{\frac{1}{4}}$ $\frac{1}{4} \text{ to } \mathbf{I}_{4}^{\frac{1}{4}}$ $\frac{1}{4} \text{ to } \mathbf{I}_{4}^{\frac{1}{4}}$

ORDINARY SIZES.

$\frac{3}{4}$ to 2 in	ches	. Round and Square		•		•	•])
I to 4	"	$ \begin{array}{c} \times \frac{3}{8} \text{ to } I^{\frac{1}{2}} \\ \times \frac{3}{8} \text{ to } I \end{array} \} \text{ Flats } \cdot \cdot \cdot $						}
$4\frac{1}{8}$ to 6	"	$\times \frac{3}{8}$ to I	·	·	Ċ	Ĩ	,)

EXTRA SIZES.

•	R	Ol	JL	1D	AN	D SQUA	1 F	(E	•	-	J
						$4\frac{1}{8}$ to $4\frac{1}{2}$					
						$4\frac{5}{8}$ to 5 .					
$\frac{5}{8}$ and $\frac{11}{16}$		•	•	•	$\frac{1}{10}$ C.	$5\frac{1}{4}$ to $5\frac{1}{2}$.	•	•	•	•	I C.
$2\frac{1}{8}$ to $2\frac{7}{8}$				•	$\frac{1}{10}$ C.	$5\frac{3}{4}$ to 6.	•	•	•	•	$I\frac{5}{10}C.$
3 to $3\frac{1}{2}$					$\frac{3}{10}$ C.	$6\frac{1}{4}$ to $6\frac{1}{2}$.	•	•			2 C.
3 [§] / ₈ to 4					$\frac{5}{10}$ C.	6^3_4 to 7 .					$2\frac{5}{10}$ c.

EXTRA SIZES.

FLAT IRON.

$\frac{7}{8}$ \times $\frac{3}{8}$ to $\frac{3}{4}$	$\frac{4}{10}$ C.	7 \times 2 $\frac{1}{8}$ to 3 $\frac{1}{2}$		$\frac{6}{10}$ C.
$I \times \frac{3}{16} \cdot \cdot \cdot \cdot$	$\frac{4}{10}$ C.	$7rac{1}{2} imes rac{3}{8}$ to I.	• •	$\frac{4}{10}$ C.
I to $6 \times \frac{1}{4}$ and $\frac{5}{16}$	$\frac{2}{10}$ C.	$7rac{1}{2} imes Irac{1}{8}$ to 2 .		$\frac{6}{10}$ C.
2 to 4 \times 1 $\frac{5}{8}$ to 2.	$\frac{2}{10}$ C.	$8 \times \frac{3}{8}$ to I.	• •	$\frac{4}{10}$ C.
2 to $4 \times 2\frac{1}{8}$ to 3.	$\frac{3}{10}$ C.	$8 \times I\frac{1}{8}$ to $2\frac{3}{4}$	• •	$\frac{6}{10}$ C.
$4\frac{1}{8}$ to $6 \times 1\frac{1}{8}$ to 2.	$\frac{2}{10}$ C.	9 $\times \frac{3}{8}$ to I.		$\frac{6}{10}$ C.
$4\frac{1}{8}$ to $6 \times 2\frac{1}{8}$ to 3.	$\frac{4}{10}$ C.	9 \times $I\frac{1}{8}$ to 2.		$\frac{3}{10}$ C.
$6\frac{1}{2}$ \times $\frac{3}{8}$ to I	$\frac{2}{10}$ C.	10 $\times \frac{3}{8}$ to \mathbf{I}_4^1		$\frac{8}{10}$ C.
$6\frac{1}{2} \times 1\frac{1}{8}$ to $2\frac{1}{2}$	$\frac{4}{10}$ C.	II $\times \frac{3}{8}$ to I_4^1		9 ₁₀ €.
7 🗙 🖁 to I	$\frac{2}{10}$ C.	12 $\times \frac{3}{8}$ to $I\frac{1}{4}$		$\frac{9}{10}$ C.
$7 \times I\frac{1}{8}$ to 2	$\frac{4}{10}c$.			

 $6\frac{1}{2}$ to 12 wide $\times \frac{1}{4}$ thick, $\frac{2}{10}$ extra over $\frac{3}{8}$ thick.

ADDITIONAL EXTRAS.

CUTTING TO LENGTHS.

ROUNDS AND SQUARES.

Up to	o 4	inch	ies,	IO t	to 20	feet lo	ong		•	•	$\frac{2}{10}$ C.
Over	4	"		"	"	"					$\frac{3}{10}$ C.
						20 fe					10

FLATS.

10 to 30 feet long $\frac{1}{10}$ c. Over 30, for every 10 feet or fraction thereof, $\frac{1}{10}$ c. extra. Under 10 feet, subject to agreement.

SHAPE.	No.	Depth.	Width of Flange.	Thickness of Web.	Weight per Yard.
		Inches.	Inches.	Inch.	Pounds.
	I	15	5 8	.65	200
	89	15	$4\frac{3}{4}$.50	150
	138	15	$4\frac{5}{8}$.42	125
	55	I 2	$5\frac{1}{2}$.59	170
	57	I 2	$4\frac{3}{4}$	•49	125
	139	I 2	$4\frac{1}{2}$. 38	96
	114	$IO\frac{1}{2}$	5	.50	135
	58	IO_2^1	$4\frac{1}{2}$.44	105
	131	IO_2^1	$4\frac{3}{8}$.38	90
	4	9	5 3 8	.60	150
	5	9	4	.40	84
	6	9	$3\frac{1}{2}$.31	70
	113	8	$4\frac{1}{2}$.38	81
	59	8	4	.35	65
	II2	7	4	.38	69
	7	7	$3\frac{1}{2}$	•35	55
	III	6	$3\frac{1}{2}$.31	50
	8	6	$2\frac{3}{4}$.25	40
	106	5	3	.30	36
	105	5	$2\frac{3}{4}$.25	30
	65	4	$2\frac{3}{4}$.25	30
	100	4	2	,20	18

I BEAMS.

To fill special orders, the weight of any of the above can be increased about ten per cent.

DECK BEAMS.

SHAPE.	No.	Depth.	Width of Flange.	Thickness of Web.	Weight per Yard	
		Inches.	Inches.	Inch.	Pounds	۶.
-	104	II ¹ / ₂	5	7 16	95 to 1	12
	88	IO	5	1 ⁷ 5	85 to 1	105
	60	9	5	$\frac{1}{3}\frac{1}{2}$	69 to	8 o
	61	8	$4\frac{3}{4}$	$\frac{21}{64}$	бо to	72
	62	7	$4\frac{1}{2}$	$\frac{5}{16}$	51 to	62
	63	6	41/4	$\frac{9}{32}$	42 to	51
	64	5	3	38	35 to	40

STEEL DECK BEAMS.

140	9	5	$\frac{1}{3}\frac{5}{2}$	84	to	95
139	8	5	$\frac{1}{3}\frac{5}{2}$	$73\frac{1}{2}$	to	84
137	6	$4\frac{1}{2}$	$\frac{7}{16}$	54	to	63
62	7	$4\frac{1}{2}$	15 16	51	to	62
63	6	4^{1}_{4}	$\frac{9}{32}$	42	to	51
64	5	3	<u>3</u> 8	35	to	40

The dimensions given correspond to the minimum weights.

4*

CHANNEL BARS.

SHAPE.	No.	Depth.	Width of Flange.	Thickness of Web.	Weight per Yard.
		Inches.	Inches.	Inch.	Pounds.
	124	15	4	58	1 50 to 200
	140	15	$3\frac{1}{2}$	$\frac{1}{2}$	115 to 150
	52	I 2	3	$\frac{1}{2}$	88 to 150
	141	I 2	3	$\frac{5}{16}$	60 to 88
	97	$IO_{\overline{2}}^{1}$	$3\frac{3}{8}$ $2\frac{3}{8}$	3	60 only
	130	IO	$2\frac{5}{8}$	$\frac{1}{2}$	75 to 111
	129	IO	$2\frac{1}{4}$	38	57 to 75
-	142	IO	$2\frac{1}{2}$	<u>5</u> 16	48 to 60
	53	9	$2\frac{3}{4}$	$\frac{1}{2}$	70 to 100
	IIO	9	$2\frac{1}{2}$	8	50 to 70
	143	9	$2\frac{1}{2}$	-5 16	37 to 50
	123	8	$2\frac{3}{8}$	3/8	47 to 57
	I 22	8	2	$\frac{1}{4}$	30 to 45
	137	7	$2\frac{1}{4}$	$\frac{5}{16}$	35 to 57
	136	7	2	$\frac{7}{32}$	25 to 34
	50	6	$2\frac{1}{2}$	$\frac{7}{16}$	47 to 56
	51	6	$2\frac{1}{16}$	$\frac{1}{4}$	28 to 36
	144	6	$I\frac{3}{4}$	$\frac{1}{6}\frac{1}{4}$	22 to 28
	I 2 I	5	2	$\frac{5}{16}$	27 to 30
	I 20	5	$I\frac{3}{4}$	$\frac{3}{16}$	17 to 21
	119	4	2	$\frac{5}{16}$	24 to 27
	118	4	$I\frac{3}{4}$	$\frac{3}{16}$	15 to 18
	117	3	I <u>5</u>	<u>3</u> 8	18 to 21
	116	3	$I\frac{1}{2}$	$\frac{1}{4}$	15 to 18

Any increase in thickness of web adds to the width of flanges and to the weight. No. 97 does not admit of any change in its dimensions. The dimensions given correspond to the minimum weights.

46

T BARS.

SHAPE.	No.	DIMENSIONS.	Weight per Yard.
		Inches.	Pounds.
	23	$5 \times 2\frac{3}{4} \times \frac{1}{2}$	35
	25	$5 \times 2\frac{3}{8} \times \frac{3}{8}$	29
	132	$4\frac{1}{2} \times 3 \times \frac{5}{16}$	25
Т	46	$4 \times 3^{\frac{3}{4}} \times \frac{3}{4}$	49
	85	4 \times 2 $\times \frac{5}{16}$	16 <u>1</u>
	IOI	$3^{1}_{2} \times 3^{1}_{2} \times {}^{1}_{2}$	$28\frac{1}{2}$
	45	$3 \times 3\frac{3}{4} \times \frac{9}{16}$	32
-	24	$3 \times 3^{\frac{1}{2}} \times {}^{\frac{1}{2}}$	30
-	102	$3 \times 3 \times \frac{13}{32}$	21
	98	$2rac{1}{2}$ \times $2rac{3}{4}$ \times $rac{13}{32}$	18
	84	$2rac{1}{2} imes 2rac{1}{2} imes rac{3}{8}$	16
	103	$2 \times 2 \times \frac{9}{32}$	9
	47	$2rac{1}{8} imes I rac{3}{16} imes rac{3}{16}$	6^{1}_{2}

NOTE.—No change can be made in the above dimensions.

EQUAL-SIDED ANGLES.

SHAPE.	No.	DIMENSIONS.	Weight per Yard.
		Inches.	Pounds.
	127	$6 \times 6 \times \frac{7}{16}$ to $\frac{13}{16}$	50.3 to 93.5
	126	5 \times 5 $\times \frac{13}{32}$ to $\frac{11}{16}$	37.0 to 62.0
-	14	4 × 4 × $\frac{3}{8}$ to $\frac{11}{16}$	28.1 to 51.6
1	15	$3\frac{1}{2} \times 3\frac{1}{2} \times \frac{5}{16}$ to $\frac{5}{8}$	20.5 to 41.0
	16	$3 \times 3 \times \frac{1}{4}$ to $\frac{1}{2}$	15.0 to 28.1
	37	$2rac{3}{4} imes 2rac{3}{4} imes rac{1}{4}$ to $rac{1}{2}$	13.4 to 25.8
	17	$2\frac{1}{2}$ \times $2\frac{1}{2}$ \times $\frac{7}{32}$ to $\frac{1}{2}$	10.5 to 23.6
	38	$2\frac{1}{4}$ \times $2\frac{1}{4}$ \times $\frac{3}{16}$ to $\frac{7}{16}$	8.0 to 18.3
	18	$2 \times 2 \times \frac{3}{16}$ to $\frac{3}{8}$	7.5 to 14.0
Γ	19	$\mathbf{I}_4^3 imes \mathbf{I}_4^3 imes rac{3}{16}$ to $rac{5}{16}$	6.1 to 10.1
	20	$I_{\frac{1}{2}}^{\frac{1}{2}} \times I_{\frac{1}{2}}^{\frac{5}{32}} \times I_{\frac{1}{4}}^{\frac{5}{32}}$ to $\frac{1}{4}$	4.4 to 7.1
	39	$I_{\frac{1}{4}}^{1} \times I_{\frac{1}{4}}^{1} \times \frac{1}{8}$ to $\frac{3}{16}$	2.8 to 4.3
	40	$I \times I \times \frac{1}{8}$ to $\frac{3}{16}$	2.4 to 3.6

NOTE.—The sides of Angles agree only with the *minimum* thickness in table; they increase in width as the thickness increases.

Orders should specify either the thickness or the weight required, but never both.

UNEQUAL-SIDED ANGLES.

SHAPE.	No.	DIMENSIONS.	Weight per Yard.
		Inches.	Pounds.
	87	$6\frac{1}{2} \times 4 \times \frac{1}{3}\frac{3}{2} \times \frac{3}{4}$	40.7 to 74.8
REVERSION	91	$6 \times 4 \times \frac{3}{8}$ to $\frac{3}{4}$	36.5 to 71.2
-	92	$6 \times 3\frac{1}{2} \times \frac{3}{8}$ to $\frac{5}{8}$	33.8 to 56.2
ļ	41	5 \times 4 \times $\frac{3}{8}$ to $\frac{5}{8}$	31.9 to 53.1
	93	5 $\times 3^{\frac{1}{2}} \times \frac{5}{16}$ to $\frac{11}{16}$	27.5 to 55.0
	42	5 \times 3 $\times \frac{5}{16}$ to $\frac{5}{8}$	23.6 to 47.1
	43	$4\frac{1}{2} \times 3 \times \frac{3}{8}$ to $\frac{9}{16}$	26.5 to 39.7
	94	4 $\times 3^{\frac{1}{2}} \times \frac{3}{8}$ to $\frac{9}{16}$	26.5 to 39.7
Г	44	4 \times 3 $\times \frac{5}{16}$ to $\frac{9}{16}$	20.5 to 36.9
1	95	$3\frac{1}{2} \times 3 \times \frac{5}{16}$ to $\frac{9}{16}$	19.7 to 34.1
	86	$3 \times 2\frac{1}{2} \times \frac{1}{4}$ to $\frac{1}{2}$	13.0 to 25.8
	109	$3 \times 2 \times \frac{1}{4}$ to $\frac{3}{8}$	11.9 to 17.8
	96	$2\frac{1}{4}$ \times $1\frac{1}{2}$ \times $\frac{3}{16}$ to $\frac{1}{4}$	7.5 to 9.0

See note on opposite page.

PHŒNIX ANGLE IRON.

TABLE OF THICKNESS AND WEIGHT PER YARD,

AS ORDINARILY MADE.

	Size.	Weight		Size.	Weight		Size.	Weight	1	Size.	Weight
e × 6	IN. $\frac{7}{16}$ $\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{58}$ $\frac{11}{16}$ $\frac{3}{34}$ $\frac{13}{16}$	LBS. 50.3 57.5 64.7 71.9 79.1 86.3 93.5	2½ × 2½	IN. $\frac{7}{32}$ $\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{38}$ $\frac{7}{16}$ $\frac{1}{2}$	LBS. 10.5 12.0 14.9 17.8 20.7 23.6	6½ × 4	IN. $\frac{132}{327}$ 7 6 $\frac{129}{158}$ 1 6 $\frac{129}{158}$ 1 16 $\frac{1334}{1234}$	LBS. 40.7 43.8 50.0 56.2 62.4 68.6 74.8	2×3	IN. 516 38776 129658	LBS. 23.6 28.3 33.0 37.7 42.4 47.1 26.5
5 × 5	13276 13276 1296 15816 16	37.0 40.0 45.5 51.0 56.5 62.0	$2\frac{1}{4} \times 2\frac{1}{4}$	3 16 14 5 6 38 7 16	8.0 10.5 13.1 15.7 18.3	6 × 4	3007,161,319,16,300,116,314	36.5 41.5 47.5 53.4 59.3 55.3	× 3½ 4½×3	3071612016 3071612916	20.5 30.9 35.3 39.7 26.5 30.9 35.3
4 × 4	3 87,6 1,29,6 1,5,816 1,6	28.1 32.8 37.5 42.2 46.9 51.6	4 2×2	36 72 145 6 38	7.5 8.5 9.4 11.7 14.0	< 3½	16314 31871612916538	71.2 33.8 39.4 45.0	4 × 3 4	9 1 5 6 3 8 7 6 1 2 9 6	39.7 20.5 24.6 28.7 32.8 36.9
$3\frac{1}{2} \times 3\frac{1}{2}$	563876129650	20.5 24.6 28.7 32.8 36.9 41.0	$1\frac{1}{2} \qquad 1\frac{3}{4} \times 1\frac{3}{4}$	3 1 1 4 5 6 5 2 3 8 5 2 3 8	6.1 8.1 10.1 4.4 5.3	4 6×		50.6 56.2 31.9 37.2	3½ × 3	5 16 387 16 129 16	19.7 23.3 26.7 30.4 34.1
3 × 3	8 14563876 1-12	15.0 18.2 21.5 24.8 28.1	1¼×1¼ 1½×1½	5 3 3 6 2 3 1 4 1 8 5 8 3 K	6.2 7.1 2.8 3.5	5 ×	3876 396 1 1 2 9 16 2 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	42.5 47.8 53.1 27.5	$3 \times 2\frac{1}{2}$	14563876 13876	13.0 16.2 19.4 22.6 25.8
2 3/4 × 2 3/4	1456 13876 12	13.4 16.5 19.6 22.7 25.8	$\xrightarrow{1\times1}_{1\times1}$	3 16 18 5 32 3 16	4·3 2.4 3.0 3.6	5 × 31/2	51638716 138710 12916 58816	30.0 35.0 40.0 45.0 50.0 55.0	2¼×1½ 3×2	14500 3KG	11.9 14.8 17.8 7.5 9.0

MISCELLANEOUS SHAPES.

SHAPE.	No.	DIMENSIONS.	Weight per Yard.
		Inches.	Pounds.
4	115	10 🗙 ½ Bulb	62
٦	133	$3\frac{1}{4}$ \times 2 \times $\frac{9}{16}$	25
+	135	$3^1_4 imes 1^9_{16} imes rac{5}{16}$	14 ¹ / ₂
1			
+	32	$2rac{1}{2} imes Irac{1}{4} imes rac{1}{4}$	9
ł	33	$rac{13}{4} imes rac{3}{4} imes rac{3}{16}$	$4\frac{1}{2}$
+	34	$\mathbf{I}_{4}^{3} imes \mathbf{I}_{4}^{1} imes rac{3}{16}$	6
~	56	$2\frac{1}{4}$ \times $\frac{9}{16}$	9
)	107]		
(}	$7\frac{1}{4}$ \times $\frac{3}{16}$ to $\frac{1}{2}$	15 to 45
	108]	Slight difference in shape.	

PRICE OF PHŒNIX COLUMNS.

RIVETED UP AND TURNED OFF AT ENDS TO SPECIFIED LENGTHS.

ORDINARY LENGTHS.

Columns longer or shorter than the ordinary lengths will be at an extra price. Any attachments made or work done will increase the cost.

A, B¹, B², and C are 4 Segments. E is 6 Segments. G is 8 Segments.

C, E, and G Columns.

OVER THREE-EIGHTHS OF AN INCH THICK.

EXTRAS.

C, E, and G Columns.

OVER THREE-EIGHTHS OF AN INCH THICK.

66														
Under	IO	66	5	"	•	•	•	•	•	•	•	$\cdot \frac{3}{10}$	66	66

THREE-EIGHTHS TO ONE-QUARTER.

Cross section containing $3\frac{1}{2}$ \square inches per Segment, or less.

	10	feet to	30	feet									$\cdot \frac{2}{10}$	cent	per lb.
Over	30	66	40	" "									$\cdot \frac{3}{10}$	66	**
" "	40	"	45	66	•	•		•			•	•	$\cdot \frac{5}{10}$	66	66
Under	10	66	5	"	•	•	•	•	•	•	•	•	· 10	66	66

B² Columns.

Over Three-Eighths of an Inch Thick. Cross section containing $10\frac{6}{10}$ \Box inches, or over.

	IO	feet to	30	feet						$\frac{1}{10}$	cent	per lb.
Over	30	66	40	"						$\frac{2}{10}$	66	66
66	40	66	45	66						$\frac{4}{10}$	66	66
Under	IO	66	5	66				•	•	$\frac{3}{10}$	66	"

THREE-EIGHTHS TO ONE-QUARTER.

Cross section containing $7\frac{4}{10}$ \Box inches, or over.

	10	feet to	30	feet					$\frac{4}{10}$	cent	per lb.
Over	30	66	40	"					$\frac{5}{10}$	66	66
Under	10	66	5	66					$\frac{4}{10}$	66	66

B¹ Columns.

OVER THREE-EIGHTHS OF AN INCH THICK.

Cross section containing $g_{10}^2 \square$ inches, or over.

	10	feet to	30	feet	•			•	•	•	$\frac{3}{10}$	cent	per lb.
Over	30	" "	35	66					,		$\frac{5}{10}$	66	66
Under	10	66	5	66							$\frac{5}{10}$	66	66

THREE-EIGHTHS TO ONE-QUARTER.

A Columns.

THREE-EIGHTHS TO ONE-QUARTER OF AN INCH THICK. Cross section containing $4\frac{9}{10}$ \Box inches, or over.

	IO Í	eet to	20	feet	•					•	I	cent	per lb.
Over	20	66	30	66							$I_{\overline{1}\overline{0}}^{\ 2}$	66	66
Under	IO	"	5	66	•		•	•	•		$\mathrm{I}_{\frac{2}{1}\overline{0}}$	66	66

UNDER ONE-QUARTER TO THREE-SIXTEENTHS.

Cross section containing $3\frac{8}{10}$ \Box inches, or over.

	IO fe	eet to	20	feet							$I_{\frac{2}{10}}$	cent	per lb.
Over	20	66	30	66					•	•	$I \tfrac{5}{10}$	66	" "
Under	10	"	5	66	•	•	•		•		$\mathbf{I}_{\mathbf{T}0}^{5}$	66	66

LIST OF

DIE-FORGED EYES ON FLAT BARS.

SIZE OF BAR.	Diameter of Pin.	SIZE OF HEAD.	Head Thicker than Bar.	DIE No.
Inches.		Inches.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2\frac{1}{16} \\ 2\frac{3}{16} \\ 2\frac{7}{16} \\ 2\frac{7}{16} \\ 2\frac{9}{16} $	$\begin{array}{c} 4 \\ 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \\ 5\frac{1}{2} \\ 1\frac{1}{8} \\ 1\frac{1}{4} \end{array}$	14 14 14	206 207 204 205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2\frac{1}{16} \\ 2\frac{11}{16} \\ 2\frac{15}{16} \\ 3\frac{7}{16} \\ 3\frac{7}{16} $	$\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6 \\ 6 \\ 6\frac{1}{4} \\ 6 \\ 6\frac{1}{4} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	5100 100 100 100 100 100 100 100 100 100	203 156 77 160
$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 1 \\ 1 \\ 6 \\ 3 \\ 1 \\ 1 \\ 8 \\ 3 \\ 1 \\ 1 \\ 8 \\ 3 \\ 1 \\ 1 \\ 8 \\ 3 \\ 1 \\ 1 \\ 8 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 2\frac{11}{16}\\ 2\frac{15}{16}\\ 3\frac{1}{16}\\ 3\frac{1}{16}\\ 4\frac{3}{16}\\ 4\frac{3}{16}\\ 5\frac{3}{16}\\ 5\frac{3}{16}\end{array}$	$\begin{array}{cccc} 6 & \times & \mathrm{I} \\ 7 & \times & \mathrm{I} \\ 7 & & \mathrm{I} \\ 8 & \mathrm{I} \\ 8 & \mathrm{I} \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $		172 1 153 152 169 144 137
$\begin{array}{c} 3\frac{1}{2} \\ 31$	$\begin{array}{c} 2\frac{1}{16} \\ 3\frac{3}{16} \\ 3\frac{7}{16} \\ 3\frac{7}{16} \\ 3\frac{15}{16} \\ 4\frac{7}{16} \end{array}$	$\begin{array}{c c} 7 & \times & {}^{1}\frac{1}{4} \\ 7\frac{1}{2} & \times & {}^{1}\frac{1}{8} \\ 8 & \times & {}^{7}\frac{7}{16} \\ 8\frac{1}{4} & \times & {}^{1}\frac{1}{4} \\ 8\frac{1}{2} & \times & {}^{1}\frac{1}{8} \end{array}$	ביומס המומה שיליא המומה המומה	155 176 154 175 157
$\begin{array}{cccc} 4 & \times & I \\ 1 \\ 1 \\ 6 \end{array}$	$\begin{array}{c} 3\\ 3\frac{1}{16}\\ 3\frac{7}{16}\\ 3\frac{1}{16}\\ 4\frac{1}{16}\\ 4\frac{3}{16}\\ 4\frac{1}{16}\\ 4\frac{1}{16}\\ 5\frac{3}{16}\\ 5\frac{3}{16}\end{array}$	$\begin{array}{c} 7_{1}^{1} \times 1_{1}^{0} \\ 7_{1}^{1} \times \times 1_{1}^{0} \\ 7_{1}^{1} \times \times 1_{1}^{0} \\ 8_{1}^{1} \times \times \times 1_{1}^{0} \\ 9_{1}^{1} \times \times \times 1_{1}^{0} \\ 9_{1}^{1} \times \times 1_{1}^{0} \\ 9_{1}^{1} \times \times 1_{1}^{0} \\ 10 \\ \end{array}$	רוביין אין אין אין אין אין אין אין אין אין	159 177 150 171 167 158 168 97
$\begin{array}{c} 4^{1}_{2} \times \mathbf{I}^{1}_{2} \\ 4^{1}_{2} \times \mathbf{I}^{3}_{4} \\ 4^{1}_{2} \times \mathbf{I}^{1}_{4} \\ 4^{1}_{2} \times \mathbf{I}^{1}_{4} \\ 4^{1}_{2} \times \mathbf{I}^{1}_{4} \end{array}$	$\begin{array}{r} 3\frac{7}{16} \\ 3\frac{15}{16} \\ 4\frac{11}{16} \\ 5\frac{7}{16} \end{array}$	$\begin{array}{c}9\times I_8^7\\9^1\times I_8^1\\10\times I_{18}^5\\10^1\times I_{18}^5\\10^1\times I_{18}^5\end{array}$	ထုံးတင်းပတ္ပံလေလ	149 170 151 62
$\begin{array}{cccc} 5 & \times & 2 \\ 5 & \times & 1 \\ 5 & \times & 2 \end{array}$	$3\frac{11}{16} \\ 4\frac{3}{16} \\ 4\frac{3}{16} \\ 4\frac{3}{16} \\ 4\frac{3}{16} \\ 4\frac{3}{16} \\ 3\frac{3}{16} \\ 4\frac{3}{16} \\ 3\frac{3}{16} \\ 3$	$\begin{array}{c} 9\frac{1}{2} \times 2\frac{1}{2} \\ 10 \times 1\frac{1}{2} \\ 10 \times 2\frac{1}{2} \end{array}$	1/21-1/22	194 162 161

LIST OF

DIE-FORGED EYES ON FLAT BARS.

SIZE OF BAR.	Diameter of Pin.	SIZE OF HEAD.	Head Thicker than Bar.	DIE No.
Inches.		Inches.		
$\begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 $	$\begin{array}{c} 4\frac{11}{16}\\ 4\frac{11}{16}\\ 5\frac{3}{16}\\ 5\frac{11}{16}\\ 5\frac{11}{16}\\ 6\frac{11}{16}\\ 6\frac{11}{16}\\ 6\frac{11}{16}\\ \end{array}$	$\begin{array}{c c} IO_{1}^{1} & \times I_{1}^{1} \\ IO_{2}^{1} & \times I_{1}^{1} \\ IO_{2}^{1} & \times I_{1}^{1} \\ II & II_{2}^{1} \\ III_{2}^{1} & \times I_{8}^{1} \\ III_{2}^{1} & \times I_{2}^{1} \\ III_{2}^{1} & \times I_{2}^{1} \\ III_{2}^{1} & \times I_{4}^{1} \end{array}$	101010101010101010	164 163 91 166 165 93 71
$\begin{array}{c} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1\frac{3}{8} \\ 1\frac{3}{4} \\ 6 \\ 6 \\ 1\frac{5}{8} \end{array}$	$\begin{array}{c} 4\frac{9}{165}\\ 4\frac{155}{165}\\ 4\frac{155}{16}\\ 6\frac{5}{16}\\ 6\frac{155}{16}\\ 6\frac{155}{16}\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>କ୍ରାର୍</u> ଦ୍ଧକ୍ରାରକ୍ରାରକ୍ରାର	178 173 174 68 179

Dies for flat bars may be used for bars that are thicker or thinner than sizes specified.

The thickness of a bar should never be less than one-fourth of its width nor more than one-half.

UPSET SCREW ENDS ON ROUND BARS.

Diameter of Bars.	Diameter of Upsets.	Length of Upsets.	Threads per Inch.	Diameter of Bars.	Diameter of Upsets.	Length of Upsets.	Threads per Inch.
Inches.	Inches.	Inches.		Inches.	Inches.	Inches.	
58	$\frac{3}{4}$	$2\frac{1}{2}$	IO	178	$2\frac{1}{4}$	7	4
5/20 22/41 /20	I	$2\frac{\bar{3}}{4}$	8	2	$2\frac{3}{8}$	$7\frac{1}{2}$	4
$\frac{7}{8}$	I 1/8	3	7	21/8	$2\frac{1}{2}$	8	4
I	I_4^1	$3\frac{1}{2}$	7	$2\frac{1}{4}$	$2\frac{5}{8}$	8	4
118	I 😽	4	6	$2\frac{3}{8}$	2 ¹ 2-58 2 ³ 314 2 ⁴⁷ 8	$8\frac{1}{2}$	$3\frac{1}{2}$
1 <u>1</u>		$4\frac{1}{2}$	6	$2\frac{1}{2}$	$2\frac{7}{8}$	9	$3\frac{1}{2}$
1 <u>8</u>	$I\frac{1}{2}$ $I\frac{3}{4}$ $I\frac{7}{8}$	5	5	2 <u>5</u>	3	9	$3\frac{1}{2}$
IĮ		$5\frac{1}{2}$	4	$2\frac{3}{4}$ $2\frac{7}{8}$	38	$9\frac{1}{2}$	$3\frac{1}{2}$
1 <u>5</u> 1 <u>3</u> 1 <u>4</u>	2	6	42		38	-9 ¹ / ₂	34
14	$2\frac{1}{8}$	$6\frac{1}{2}$	42	3	312	10	34

GENERAL FORMULÆ EXPLANATORY OF THE FOLLOWING TABLES AND THEIR APPLICATION.

Let A represent the area of cross section in square inches. Let I represent the moment of inertia of A about an axis passing through its centre of gravity.

Let d represent the distance, in inches, of the most remote fibre from the axis for I.

Let $r = \left(\frac{I}{A}\right)^{\frac{1}{2}}$ represent the radius of gyration of the section A.

All the preceding quantities are given in the following tables for the various sections of beams, channels, angles, etc.

Let M represent the greatest bending moment, in inchpounds, for any loading or span.

Let l represent the span in feet.

With the load W pounds at the centre of the span l :--

M = 3 W l for ends of beam simply supported.

 $M = \left\{ \frac{\frac{15}{8} \text{ W } l}{-\frac{9}{4} \text{ W } l} \right\} \text{ for one end simply supported and the other fixed.}$

 $\mathbf{M} = \left\{ \begin{array}{c} \frac{3}{2} & \mathbf{W} \\ -\frac{3}{2} & \mathbf{W} \end{array} \right\} \text{ for both ends of beam fixed.}$

With the uniform load of w pounds per lineal foot of span :---

 $M = \frac{3}{2} w l^2$ for ends of beam simply supported.

 $M = \left\{ \frac{\frac{2}{3} \frac{7}{3} \frac{zv}{2}}{-\frac{3}{2} \frac{zv}{2}} \right\}$ for one end simply supported and the other fixed.

 $\mathbf{M} := \left\{ \begin{array}{c} \frac{1}{2} \ \varpi \ \ell^2 \\ - \ \varpi \ \ell^2 \end{array} \right\} \text{ for both ends of beam fixed.}$

The preceding negative values belong to points of support.

Let K represent the greatest stress in pounds per square inch,—*i.e.*, the stress in the most remote fibre.

If r is known, as it sometimes may be,

Let D represent the greatest deflection in inches.

Let E represent the coefficient of elasticity in pounds per square inch. Then

W at span centre. Uniform load. $D = 36 \frac{W l^3}{E I} \dots 22.5 \frac{w l^4}{E I}$ for supported ends.

D = 17.11 $\frac{W / 3}{E I}$ 9.366 $\frac{w / 4}{E I}$ for one supported and one fixed end.

D = $9 \frac{W /3}{E I} \dots 4.5 \frac{z /4}{E I}$ for both ends fixed.

For a circular section $I = \frac{\pi R^4}{4}$ and d = R (the radius).

Hence, M = 0.7854 K R³ (4). Eqs. (1), (2), (3), and (4) are of great practical value. The values in table on page 58 are computed from Eq. (4), with K equal to 15,000, 18,000, and 20,000.

RIVET BEARING AND SHEARING.

Let S represent the shearing resistance in pounds per square inch.

Let p represent the bearing pressure in pounds per square inch.

Let (2R) represent the rivet diameter in inches.

Let *t* represent the thickness of plate in inches.

Then, Shearing resistance of rivet = $\pi R^2 S$. (5).

Bearing resistance of rivet = 2R pt . (6).

The values of Eqs. (5) and (6) for S = 7500, and p = 12,000 and 15,000 are given for various values of (2R) and t on page 59.

MAXIMUM BENDING MOMENTS TO BE ALLOWED ON PINS FOR FIBRE STRAINS OF 15,000, 18,000, AND 20,000 POUNDS.

Diam. of Pin.	BENI	ING MOMP	ONTS.	Diam. of Pin.	BENI	DING MOMEN	NTS.
Inches.	S=15,000	S=18,000	S=20,000	Inches.	S==15,000	S=18,000	S=20,000
$1 \\ 1_{16} \\ 1_{8} \\ 1_{16} \\ 1_{16} \\ 1_{16} \\ 1_{16} \\ 1_{16} \\ 1_{38} \\ 1_{16} \\ 1_{38} \\ 1_{16} \\ 1_{16} \\ 1_{38} \\ 1_{16} $	1,470 1,770 2,100 2,470 2,880 3,330 3,830 4,370	1,770 2,120 2,520 2,960 3,450 4,000 4,590 5,250	1,960 2,350 2,800 3,290 3,830 4,440 5,100 5,830	9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	66,580 70,140 73,840 77,660 81,600 85,690 89,900 94,240	79,900 84,170 88,600 93,190 97,920 102,820 107,880 113,090	88,770 93,520 98,450 103,550 108,800 114,250 119,870 125,660
1296 16 16 16 16 16 16 16 16 16 16 16 16 16	4.970 5,620 6,320 7,080 7,890 8,770 9,710 10,710 11,780	5 960 6,740 7,580 8,490 9,470 10,520 11,650 12,850 14,140	6,630 7,490 8,420 9,430 10.520 11 690 12,940 14,280 15,710	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $	98.720 103.370 108.130 113,040 118,100 123.320 128,680 134,190 139,860	118,460 124,040 129,760 135,650 141,730 147,980 154,420 161,030 167,830	131,620 137,820 144,170 150,720 157,470 164,420 171,570 178,920 186,480
$\begin{array}{c} 1 & 6 \\ 2 & 2 \\$	12,920 14 130 15,410 16,770 18,210 19,720 21,320 23,000 24,780	15,500 16,960 18,500 20,130 21,850 23,670 25,590 27,600 29,730	17,220 18,840 20,550 22,360 24,280 26,300 28,430 30,670 33,040	$\begin{array}{c} 458116\\ 4113416\\ 4113416\\ 4516\\ 556\\ 554\\ 556\\ 554\\ 556\\ 556\\ 556\\ 55$	145,690 151,670 157,820 164,140 170,600 177,260 184,100 198,200 213,100	174.820 182,000 189'380 196,960 204,750 212.710 220,800 237,800 255,600	194,250 202,220 210,450 218,850 227,470 236,350 245,400 264,300 284,100
2 2 3 110 2 2 3 113 2 2 3 113 2 2 11 2 2 11 2 2 11 2 2 11 2 2 11 3 116 3 116	26,620 28,580 30,630 32,760 34,980 37,330 39,750 42,290	31,950 34,300 36,750 39.310 41.980 44,800 47,700 50,750	35,500 38,110 40.830 43,680 46,650 49,770 53,000 56,390	555555618014780 666	228,700 245,000 262,100 280,000 298,600 318,100 338,400 359,500	274,300 294 000 314,400 336,000 358,300 381,700 406,100 431,400	304.900 326700 349,500 373.300 398,200 424,100 451,200 479,400
38 56 3 14 56 3 3 14 56 3 3 14 56 3 3 11 14 56 3 3 11 12	44,940 47,690 50,550 53,520 56,600 59,810 63,130	53,930 57,230 60,660 64 230 67,930 71,780 75,760	59.920 63,590 67.400 71,370 75.470 79.750 84 180	6 6 6 6 6 7	381,500 404,400 428,200 452 900 478,500 505,100	457,830 485.300 513,900 543,300 574,200 606,100	508.700 539,200 570,900 603,900 638,000 673,500

											-								
		1														12,750		13,500	14,250
		$\frac{15^{\prime\prime}}{16}$													11,250	050.11		12,650	13,360
		1/1 8											0 840	04066	10,500	11.160	14,770	018,11	15,590 12,470
IVETS	OF PLATE.	$\frac{13^{\prime\prime}}{16}$										8,530	0110	20 to 10	9,750	12,950	13,710	10,970	14,470 11,580
SHEARING AND BEARING VALUES OF RIVETS.	BEARING VALUE FOR DIFFERENT THICKNESSES OF	3// 4		*							7,310	7,870	8 410	11,250	0000'6	0.560	12,660	10,120	13,300 10,690
UES	RENT THIC	$\frac{11''}{16}$							200	0,190	6,700	9,020 7,220	9,670	10,310	8,250	10,960 8.760	11,600	9,280	9,800
VAL	OR DIFFEI	8						5.160		5,020	6,090	8,200 6,560	8,790	9,370	7,500	0,000	10.550	8,440	11,130 8,900
RING	VALUE F	9 '' 16					4,220	4.640	6,330	5,000	0,000 5,480	7,380	7,910	8,440	6,750	8,960	0.400	7,590	10,020 8,010
BEA	EARING	1/1				3,770	3,750	5,160	5,620	4 500	0,090 4,870	6,560 5,250	7,030	7.500	6,000	7,970	8.440	6,750	8,910
QN	8	7 "			2,620	3,690 2,950	4,100 3,280	4,510	4,920	3,940	5,330	5,740	6,150	6.560	5,250	6,979	7.280	5,900	7,790
A D		311		1,970	2,250	3,160 2,530	3,510 2,810	3,870	4,220	3,370	4,570	4,920	5,270	4,220	4,500	5,980	6.230	5,000	6,680 5,340
RIN($\frac{5}{16}$	1,400	2,050 1,640	2,340 1,870	2,640 2,110	2,930 2,340	3,220	3,520	2,810	3,010 3,050	4,100	4,390	3,520	3,750	4,980	5,900	4,220	5,570
HEA		1''	1,410 1,120	1,640 1, <u>3</u> 10	1,870 1,500	2,110 1,690	2,340 1,870	2,580 2,060	2,810	2,250	3,050 2,440	3,280	3,520	2,010	3,000	3,980	3,190	3,370	4,450 3,560
S	Allowed	Per Sq. In.	15,000	15,000 12,000	15,000 12,000	15,000 12,000	15,000 12,000	15,000	15,000	12,000	15,000	15,000	15,000	I2,000	12,000	15,000	15,000	12,000	15,000
	Single	at 7500 Lbs.	828 {	1,130 {	I,470 {	1,860 {	2,300 {	2,780 {	2 210 5		3,890 {	4,510 {	5.180 {		2,890 {	6,650 {		7,400 {	8,310 {
	Diam.	of Rivet.	31	7 // I6	27/1	$\frac{3}{16}''$	8/1	$\frac{1}{16}$	3//	4	$\frac{13}{16}''$	<u>117</u>	12/1		., I	1_{16}^{1}		187	$1\frac{3}{16}^{\prime\prime}$

THE PHŒNIX COMPANY. IRON PHŒNIX BEAMS. PROPERTIES OF Neutral Axis Coincident with Axis of Web. 0.056 0.056 0.077 0.077 0.077 0.077 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.0550 0.42 RADIUS OF GYRATION. Neutral Axis Perpendicular to Axis of Web. 55.882 55.777 55.777 55.777 55.777 55.75 55.7 Neutral Axis Coincident with Axis of Web. 23.93 13.62 24.08 25.69 27.60 27.60 27.60 26.72 25.45 25.425 1.13 0.31 MOMENT OF INERTIA. Per pendicular to Axis of Web. Neutral Axis 676.57 506.74 3416.19 381.911 381.911 381.911 381.911 582.55 175.36 1159.07 1159.07 1159.07 1159.07 1159.07 110.93 110.93 110.93 25.74 25.75 25.75 25.74 25.75 25.74 25. 14.91 12.42 7.63 4.41 Width of Flange. Inches. Phickness of Web. Inches. 0.65 0.52 0.42 0.42 0.44 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.37 Area of Section. Sq. In. 12.0 12.5 20.0 Weight Per Yard. Lbs. 00 Io¹/¹/¹ Medium. Io¹/¹ Light. 9/¹ Heavy. 9/¹ Medium. 12'' Light. 10½'' Heavy. Medium. Light. Heavy. Medium. DESIGNATION. Light. Heavy. Light. Heavy. Light. Light. Heavy. Heavy. Heavy Light. Light. 112 11 12' 12' [2" 10.0 8/1 2... 21 20 5 No. of Shape. 65 65

6**0**

BEAMS.	
DECK	
PHŒNIX	NOAL
OF	
PROPERTIES	

Distance of	Centre of Gravity from Outside of Flange.	4.27	3 77	2.96	2 59	2.25	I 88	2.41		3.59	3.40	2.85	2.39	2.78
GYRATION.	Neutral Axis Coincident With Web Axis.	0.74	0.78	0.84	0.80	0.77	0.75	0.51		0.74	0.79	0.85	0.76	0.72
RADIUS OF GYRATION	Neutral Axis Parallel to Flange.	4.21	4.22	3.27	2.90	2.53	2.17	1.79		3.50	3.04	2 69	2.18	2.16
PINERTIA.	Neutral Axis Coincident with Web Axis.	5.17	5.16	4.84	3.85	3.04	2.35	0.89		4.55	4.55	5.34	3.08	2.15
MOMENT OF INERTIA	Neutral Axis Parallel to Flange.	168.75	151.53	73.69	50 37	32.58	19.69	11.27	eL.	101.08	66.67	53.13	25.16	19.09
	Width of Flange. Inches.	5.0	5.0	5.0	4.75	4.5	4.25	3.0	STEE	5.0	5.0	5.0	45	4.0
	Thickness of Web. Inches.	0.438	o 438	0.344	0.328	0.313	0.281	c.375		0.438	0.438	0.438	0.438	0.375
	Area, Sq. In.	9.5	8.5	6.9	6.0	5.1	4.2	3.5		8.23	7.2	7.35	5.3	4.11
	Weight Per Yard. Lbs.	95	85 85	69	60	51	42	35		84	73.5	75	54	42
	DESIGNATION.	$11\frac{1}{2}^{1/}$ Light.	IC// Light.	9// Light.	8// Light.	7// Light.		5// Light.		9// Light.	8// Light.	7// Light.	6// Heavy.	6// Light.
	No. of Shape.	104	80	00	61	62	63	64		140	I 39	138	137	136

	тн	E PHŒN	IX	"	30	יונ	N	C	0	IV	P	A	N	Y	•			
	Distance of	Centre of Gravity from Outside of Web.	1.08	1.00	0.80	0. 33	0.80	60.0	0.02	0.80	0.70	0.00	0.50	0.50	0.50	0.53	0.70	0.70
	GYRATION.	Neutral Axis Parallel to Web through Centre of Gravity.	1.09	I.IO	0.91	0.93	0.75	0.70	- 0°09	0.71	0.69	0.09	0.00	0.08	0.58	0.59	0.72	0.73
IRON.	RADIUS OF GYRATION	Neutral Axis Perpendicular to Web Axis at Centre.	5.27	5.47	5.30	5.53	3.96	4.3I	4.26	4.54	3.40	3.60	3.51	3.64	3.43	3.58	3.07	3.28
ANNEL	V INERTIA.	Neutral Axis Parallel to Web through Centre of Gravity.	23.61	18.27	12.39	10.01	8.44	5.07	4.19	3.01	5.26	3.51	2.59	2 2I	2.49	1.97	5.24	3.69
OF PHŒNIX CHANNEL	MOMENT OF INERTIA	Neutral Axis Perpendicular to Web Axis at Centre.	554.57	449.11	421.87	351.56	235.73	163.73	I59.44	123 50	128.61	97 36	74 09	63.67	88 I7	73.17	94.27	75.29
DHd y		Thickness of Web. Inches.	0.1	0.625	o 75	0.5	0.1	0.5	0.563	0.313	0.875	0.5	0.438	0.313	o.555	o 375	0.813	0.5
		Width of Flange. Inches.	4.38	0.4	3.75	3.50	3.5	3.0	3.25	3.0	3.0	2.63	2.63	2.5	2.43	2.25	3.06	2.75
PROPERTIES		Area of Section. Sq. In.	20.0	15.0	I5.0	11.5	IS O	.00 00	.00 00	6.0	I.II	7.5	0.0	4.8	7.5	5.7	0.0I	20
PRO		Weight Per Yard.	200	ISO	150	IIS	ISO	80	80	60	III	75	60	48	75	57	001	70
		DESIGNATION.	Is" Heavy.	IS" Light.	IS" Heavy.	IS" Light.	12" Heavy.	12'' Light.	12" Heavy.	12'' Light.	Io" Heavy.	Io" Light.	Io" Heavy.	Io" Light.	Io" Heavy.	Io'' Light.	q" Heavy.	9'' Light.
		No. of Shape.	124	124	140	I40	0 12	20	I4I	I4I	I30	130	142	142	129	120	53	23

410 WALNUT ST., PHILADELPHIA.	
0.71 0.70 0.75 0.55	
0.67 0.69 0.69 0.61 0.61 0.61 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55	
3.26 3.49 3.49 3.49 3.49 3.49 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40	
3.18 2.36 2.36 1.82 1.182 1.14 1.14 1.31 1.31 1.31 1.31 1.31 1.31	
74.49 61.01 61.01 85.83 74.49 74.49 33.59 33.56 33.76 33.76 33.76 33.76 33.76 33.76 23.12 17,62 17,62 17,62 17,62 17,62 16.89 16.89 16.89 16.89 16.89 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.49 16.80 16.90 16.80 16.90	
0.597 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.287 0.288	
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
9// Heavy. 9// Light. 9// Light. 8// Heavy. 8// Light. 8// Light. 7// Light. 7// Light. 6// Light. 6// Light. 5// Heavy. 6// Light. 7// Light. 7// Light. 3// Light. 3// Light. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
110 143 143 143 143 122 123 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 137 136 137 137 136 137 137 136 137 137 137 137 137 137 137 137 137 137	

N.	Distance of	Centre of Gravity from Outside cf Side.	1.70	I.58	I.55	1.46	I.22	1.16	I.08	o.93	o 93
	GYRATION.	Neutral Axis through Cen- tre of Gravity at 45° to Sides.	I.14	1.16	0.99	10.I	0.76	0.78	o.67	0.68	0.58
	RADIUS OF GYRATION	Neutral Axis through Cen- tre of Gravity Parallel to Side.	1.78	1.85	I.54	I.59	1.18	1.25	1.03	1.06	o.89
	MOMENT OF INERTIA.	Neutral Axis through Cen- tre of Gravity at 45° to Sides.	12.15	6.77	6.07	3.77	3.01	I.7I	1.84	0.95	0.95
EQUAL SIDES.	MOMENT 0	Neutral Axis through Cen- tre of Gravity Parallel to Side.	29.62	17.22	14.70	9.35	7.18	4.39	4.35	2.30	2.23
QUAL		Thickness. Inches.	0.813	0.438	o.688	0.406	o.688	0.375	0.625	0.313	0.5
Щ		Area of Section. Sq. In.	9.35	5.03	6.2	3.7	5.16	2.81	4.1	2.05	2.81
		Weight Per Yard. Lbs.	93.5	50.3	62.	37.	51.6	28. I	41.	20.5	28. I
		DESIGNATION.	$6^{\prime\prime} \times 6^{\prime\prime}$ Heavy.	$6^{\prime\prime} \times 6^{\prime\prime}$ Light.	$5^{\prime\prime}$ \times $5^{\prime\prime}$ Heavy.	$5^{\prime\prime} \times 5^{\prime\prime}$ Light.	$4^{\prime\prime} \times 4^{\prime\prime}$ Heavy.	$4^{\prime\prime} \times 4^{\prime\prime}$ Light.	3^{1}_{2} // $\times 3^{1}_{2}$ // Heavy.	$3_2^{1/7} \times 3_2^{1/7}$ Light.	$3^{\prime\prime} \times 3^{\prime\prime}$ Heavy.
		No. of Shape.	127	127	126	126	14	14	15	15	16

PHŒNIX ANGLE IRON.

THE PHOENIX IRON COMPANY,

	4	10	W		N	υτ	S	т.,	P	н	LA	DE	LP	н	А.		
o.87	0.83	0.82	0.77	0.7	0.74	0.69	0.62	0.6	o.55	0.52	0.45	0.44	o.36	o.43	0.31	0.29	
0.6	0.49	o.55	0.47	0.49	0.44	0.46	0.38	0.40	o.34	o.35	0.29	0.29	0.24	0.28	0.19	0.19	
0.94	0.80	o.87	0.72	o.77	0.67	0.71	0.59	0.62	0.52	o.55	0.44	0.46	0.38	0.42	0.29	o.30	
o.54	0.62	0.41	0.52	0.25	o.35	0.17	0.20	0.12	0.12	0.07	0.06	0.04	0.02	0.02	0.01	0.01	
I.33	1.65	10.I	I.22	0.62	0.82	0.40	0.49	0.29	0.27	0.18	0.14	0.09	0.66	0.05	0.03	0.02	
0.25	0.5	0.25	0.5	0.219	0.438	0.188	0.375	0.188	0.313	0.188	0.25	0.156	0.188	0.125	0.188	0.125	
1.5	2.58	I.34	2.36		I.83	0.8	I.4	o.75	10.I	0.61	0.7I	0 .44	o.43	0.28	0.36	0.24	
15.	25.8	13.4	23.6	10.5	18.3	%	14.	7.5	10.I	· 6.1	7.1	4.4	4.3	2.8	3.6	2.4	
$3^{\prime\prime} \times 3^{\prime\prime}$ Light.	$2\frac{3}{4}'' \times 2\frac{3}{4}''$ Heavy.			$2\frac{1}{2}^{1/2} \times 2\frac{1}{2}^{1/2}$ Light.	$2\frac{1}{4}'' \times 2\frac{1}{4}''$ Heavy.	$2\frac{1}{4}^{\prime\prime} \times 2\frac{1}{4}^{\prime\prime}$ Light.	$_{2^{\prime\prime}}$ \times $^{2^{\prime\prime}}$ Heavy.	$2^{\prime\prime} \times 2^{\prime\prime}$ Light.	$\times 1\frac{3}{4}$	$I_4^{3/\prime} \times I_4^{3/\prime}$ Light.	$1\frac{1}{2}'' \times 1\frac{1}{2}''$ Heavy.		$I_{\frac{1}{4}}^{1/\prime} \times I_{\frac{1}{4}}^{1/\prime}$ Heavy.	$I_{\frac{1}{4}}^{\frac{1}{4}} \times I_{\frac{1}{4}}^{\frac{1}{4}}$ Light.	$_{I^{\prime\prime}}$ \times $_{I^{\prime\prime}}$ Heavy.	$1^{\prime\prime} \times 1^{\prime\prime}$ Light.	
1 6	37	37	17	17	38	38	18	18	19	19	20	20	39	39	40	40	

							414	т,		
	DISTANCE OF CEN- TRE OF GRAVITY.	From Short Side.	2.23	2.18	2.10	2.00	2.17	2.11	1.60	I.55
	DISTANCE TRE OF	From Long Side.	1.03	0.91	I.08	o.97	0.90	0.82	I.I.I	I.04
	ATION.	Neutral Axis Parallel to Line through Extrem- ities of Sides.	0.95	0.94	0.90	0.89	0.82	0.79	0.86	0.83
	RADIUS OF GYRATION.	Neutral Axis Parallel to Short Side.	2.06	2.08	I.86	I.93	1.89	I.93	I.55	I.59
	RADIU	Neutral Axis Parallel to Long Side.	1.09	I.I5	1.12	1.17	0.96	I.00	1.17	I.20
RON. s.	RTIA.	Neutral Axis Parallel to Line Ends of Sides.	6.75	3.60	5.77	2.89	3.78	2.11	3.93	2.20
LE II SIDE	MOMENT OF INERTIA.	Neutral Axis Parallel to Short Side.	31.74	17.61	24.63	13.60	20.08	12.59	12.76	8.06
ANG	MOME	Neutral Axis Parallel to Long Side.	8.88	5.38	8.93	5.00	5.18	3.38	7.27	4.59
PHENIX ANGLE IRON UNEQUAL SIDES.		Thick- ness. Inches.	0.75	9.406	o.75	o.375	0.625	o.375	0.625	o.375
PHO		Area of Section. Sq. In.	7 48	4.07	7.12	3.65	5.62	3.38	5.31	3.19
		Weight Per Yard. Lbs.	74.8	40.7	71.2	36.5	56.2	33.8	53.1	31.9
		DESIGNATION.	$6\frac{1}{2}^{\prime\prime} \times 4^{\prime\prime}$ Heavy.	$6\frac{1}{2}^{\prime\prime} \times 4^{\prime\prime}$ Light.	\sim	$6^{\prime\prime} \times 4^{\prime\prime}$ Light.	$6'' \times 3^{1/2}_{2}$ Heavy.	$6^{\prime\prime} \times 3^{\frac{1}{2}^{\prime\prime}}$ Light.	$5^{\prime\prime} \times 4^{\prime\prime}$ Heavy.	$5^{\prime\prime} \times 4^{\prime\prime}$ Light.
		No. of Shape.	87	87	91	91	92	92	41	41

63	.5	83	.80	56	.49	1.23	1.12	1.36	1.32	1.12	1.08	0.95	0.92	1.02	0.09	0.75	0.67	1
-																		
0.94	o.79	0.81	o.74	0.82	o.74	0.99	o.89	o.86	o .80	o.88	0.82	0.72	o.68	o.53	0.49	0.38	o.33	
0.80	0.84	0.67	0.64	0.69	0.68	0.76	0.78	0.65	0.61	0.63	0.62	0.56	0.52	0.47	0.46	o.39	0.40	
I.56	1.61	I.56	1.60	1.4I	I.44	I.22	1.25	1.24	1.27	1.07	I.I0	0.94	0.98	0.93	96.0	0.71	0.81	_
0.98	I.03	0.81	o.85	o.84	o.86	I.03	1.05	o.86	0.89	o.87	0.90	0.72	o.75	0.56	0.57	0.42	0.42	
3.52		2.11	0		I.23	2.29	1.61	I.56	0.76	I.35	0.76	0.81	0.36	o.39	0.25	0.14	0.12	-
I 3.38	7.13	11.46	6.04	7.89	4.60	5.89	4.14	5.67	3.31	3.90	2.38	2.28	1.25	I.54	1.09	0.45	0.49	-
5.28	2.92	3.09	1.75	2.80	1.96	4.21	2.98	2.73	I.62	2.58	1.60	I.34	0.72	o 56	0.38	0.16	0.13	
0.688	0.313	0.625	0.313	0.563	o.375	0.563	0.375	0.563	0.313	0.563	0.313	0.5	0.25	o.375	0.25	0.25	0.188	
5.5	2.75	4.71	2.36	3-97	2.65	3.97	2.65	3.69	2.05	3.41	1.97	2.58	1.3	1.78	1.19	0.0	0.75	
55.	27.5	47.I	23.6	39.7	26.5	39.7	26.5	36.9	20.5	34.1	19.7	25.8	13.	17.8	6.11	.6	7.5	-
$ 5'' \times 3^{\frac{1}{2}''}$ Heavy.	$5^{\prime\prime} \times 3_2^{1/\prime}$ Light.	$5^{\prime\prime} \times 3^{\prime\prime}$ Heavy.		$4\frac{1}{2}'' \times 3''$ Heavy.	$4\frac{1}{2}'' \times 3''$ Light.	$4'' \times 3^{\frac{1}{2}''}$ Heavy.	$4'' \times 3\frac{1}{2}''$ Light.	$4^{\prime\prime} \times 3^{\prime\prime}$ Heavy.	$4^{\prime\prime} \times 3^{\prime\prime}$ Light.	$3\frac{1}{2}'' \times 3''$ Heavy.	$3\frac{1}{2}'' \times 3''$ Light.		$3'' \times 2^{1/1}$ Light.	$3^{\prime\prime} \times 2^{\prime\prime}$ Heavy.	$3^{\prime\prime} \times 2^{\prime\prime}$ Light.	$2\frac{1}{4}^{1/7} \times 1\frac{1}{2}^{1/7}$ Heavy.	$2\frac{1}{4}^{\prime\prime} \times 1\frac{1}{2}^{\prime\prime}$ Light.	
93	93	42	42	43	43	94	94	44	44	95	95	86	86	601	601	96	96	

	Distance of	Centre of Gravity from Top.	0.77	0.66	0.76	1.27	0.57	1.18	0.98	0.84	0.37		I.02	0.89	0.75	0.02
	GYRATION.	Neutral Axis Ooincident with Web.	1.22	1.17	0.98	0.84	10.1	o.58	0.58	0.53	0.15		0.76	0.69	0.53	0.14
BARS.	RADIUS OF	Neutral Axis Parallel to Flange.	0.79	0.69	0.88	1.15	0.60	1.14	I.02	o .84	0.36		90.I	0.92	0.76	0.20
H H H	MOMENT OF INERTIA.	Neutral Axis Coincident with Web.	5.24	3.94	2.39	3.47	1.68	I.08	10.1	0.50	0.15		I.64	o.86	0.46	0.17
SIDE	MOMENT 0]	Neutral Axis Parallel to Flange.	2.21	1.39	1.94	6.50	0.60	4.17	3.14	I.26	0.86	SIDES.	3.20	1.76	0.92	o.35
ES OF PHU UNEQUAL		Thickness of Flange. Inches.	0.5	0.375	0.313	0.625	0.313	0.469	0.438	0.375	0.188	EQUAL	0.453	0.375	0.344	0.25
PROPERTIES		Thickess of Web. Inches.	0.563	0.563	0.375	0.797	0.381	0.5	0.438	0.359	0.297	Щ	0.422	0.375	0.344	0.25
ROPE		Area. Sq. In.	3.5	2.0	2.2	4.9	1.65	3.2	.0.	1.8 1.8	0.65		2.85	2.1	1.6	0.9
24		Weight Per Yard. Lbs.	35	20	2, 2	49	16.5	32	30	18	6.5		28.5	21	16	6
		Size Flange by Web.	×	\mathbf{X}	$(\times$	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	$2\tilde{g}^{\prime\prime} \times I \frac{3}{16}^{\prime\prime}$		\times	\times	$2\frac{1}{2}$ // X $2\frac{1}{2}$ //	X
		No. of Shape.	23	25	132	46	85	45	24	98	47		IOI	I02	84	103

DETAILS OF CONSTRUCTION

IN

WROUGHT-IRON WORK.

FOR the convenience of Architects, Engineers, and Builders, some of the details of construction employed in wrought-iron work are given in the following pages, and the adaptations of the various shapes to structural uses will be illustrated and explained under the several heads into which the work is classified.

In the building of FLOORS and ROOFS, it is customary to make use of BEAMS, CHANNELS, COLUMNS, and other shapes of rolled iron.

FLOORS.

In planning a floor, the first point to be determined is the load that will probably be placed upon it.

The weight of the materials composing the floor is usually termed the *dead* load, and the weight of the persons or stores of any kind that may be placed upon the floor is called the *live* load. The dead load of a fire-proof floor, made of rolled beams and four-inch brick arches, filled in above with concrete, may be taken at 70 pounds per square foot, and the live load for dwellings or offices may be assumed at 70 pounds additional, and on these assumptions the table on page 85 has been calculated. But

in public buildings or churches, where large crowds of persons in motion may congregate, or in warehouses where heavy goods may be stored, it is evident that the loads will have to be determined by the circumstances, and will exceed the amounts above specified.

For ordinary conditions the following total loads per square foot may be assumed as giving a safe approximation in practice :

Dwellings or	· O	ffice	B	uild	lin	gs		•	140	pounds.
Public Halls	or	Ch	urc	ches				•	175	"
Warehouses	•						150	to	300	"

In order to support these loads with entire safety, **I** beams of various dimensions are offered in the accompanying tables. For floors of small span the lighter beams can be economically used, but for greater spans larger beams are necessary.

That a beam should be strong enough to support a given load for a given span is not all that is requisite—it is equally important that it should be stiff enough. Rigidity prevents vibration, and the avoidance of this is of great importance, since repeated movements in the floor would injure and possibly destroy the masonry in the brick-work. It is, therefore, advisable, where circumstances permit, to consider whether deep beams placed further apart might not prove to be more economical than light beams near to each other.

For the proper spacing of beams under various loads, reference may be had to the diagram given on page 40.

Under no circumstances, however, should beams be strained beyond the limits of their elasticity; or, in other words, so strained that on the removal of the load they will not return to their original condition without set or permanent deflexion.

If a beam is required to sustain a load concentrated at the centre of the span, it must be noted that only one-half as much weight can be borne when so concentrated as could be supported if the load were uniformly distributed over the whole beam.

The figures given in the tables for the load-bearing capacity of any beam must then be divided by 2 to ascertain the safe load concentrated at the middle of the span, and this concentrated load will cause the beam to deflect $\frac{8}{10}$ as much as would the distributed load named.

If the load is to be concentrated at any other point than the centre, then the following statement of proportion will determine the case: The weight that the beam can carry at the centre is to the weight that it can carry at any other point as the rectangle of the segments of the span at the given point is to the square of half the span. For example, supposing a 12-inch 125-pound beam to support with safety a central load of five tons for a span of 20 feet, what load will it carry concentrated at a point 5 feet from one wall?

Here, 5 tons : X tons :: 5×15 : 10 \times 10, or $6\frac{2}{3}$ tons.

This rule is of service in such cases as when it is required to provide proper beams in floors under heavy local loads, such as safes or vaults.

Having determined the load per square foot to be sustained, the proper beams to use may be ascertained by reference to Table II. The coefficient of safety is placed above each beam in this table, and this divided by the clear span in feet will show the strength of the beam at this span for a distributed load in net tons of 2000 pounds. The deflexion of the beam corresponding to this load will be found in the next line, and the weight of the beam should be deducted from the safe load. For any less load uniformly distributed the deflexion will be directly proportionate to that given in the table.

To determine the strength of beams many experiments have been made, and the generally accepted theory with regard to the effect of applied loads is that which assumes a neutral axis at the centre of gravity of the cross-section of the beam, and supposes the material above this axis to be compressed while that below the axis is extended, the resistance of any element to the strains of compression or extension being directly as its distance from the neutral axis.

Certain general principles have been fully confirmed by experiment, such, for instance, as that in beams of equal length and breadth the strength varies directly as the square of the depth, and in beams of equal length and depth directly as the breadth.

Hence the strength of any beam may be represented by the following expression:

$$W = \frac{breadth \times square of depth}{length} \times constant.$$

The value of the constant being dependent upon the material of the beam. This may also be written,

$$W = \frac{\text{area} \times \text{depth} \times \text{constant}}{\text{length}} = \frac{a \times d \times c}{L}.$$

Representing the various conditions of loading, it has further been determined by experiment that the following proportions obtain for all beams

Fixed at one end and loaded at the other,

$$W = \frac{a \times d \times c}{L};$$

Fixed at one end and uniformly loaded,

$$W = 2 \left(\frac{a \times d \times c}{L} \right).$$

Supported at both ends and centrally loaded,

$$W = 4 \left(\frac{a \times d \times c}{L} \right);$$

Supported at both ends and uniformly loaded,

$$W == 8 \left(\frac{a \times d \times c}{L} \right).$$

To apply these formulæ to any given beam, it is necessary to obtain by experiment the value of the constant c, taking the average of a number of tests. One-sixth, one-fourth, or even one-third of this value may be taken as the working load, according to the conditions of service for which the beam may be designed. For wrought-iron rolled beams, c may be taken as 48,000 pounds, and the safe load per square inch of effective section at 12,000 pounds, or six net tons, and with this as a constant the tables showing the strength of Phœnix beams have been computed.

By "effective section" is meant that portion of the total section which is effective in resisting the strains of tension or compression, and it is ordinarily computed by adding one-sixth of the area of the stem or web to the entire area of one flange; thus, $a + \frac{a'}{a}$.

In this estimate of the effective section two-thirds of the area of the web have been omitted from the calculation, because of the assumption that this portion of the web lies too near to the neutral axis to assist in offering any resistance to the strains caused by a load.

The "effective depth" of a beam is the distance between the centres of gravity of its two flanges, and in Table I this effective depth has been expressed, both in feet, D, and in inches, d; the former being required in the formula for strength, while the latter is required in the formula for deflexion.

For rolled beams, under the equally distributed loads of floors, the effective section of the lower flange is in tension and the upper flange in compression, so that if the safe load of six tons per square inch is assumed, the general formula will be

W = 8
$$\left(\frac{a \times d \times c}{L}\right) = \frac{8 D \left(a + \frac{a'}{6}\right) 6}{L}$$

Now, in this formula, it is only necessary to insert the proper values for "effective depth" and "effective section" given in the table for each particular beam, in order to determine its strength for any given span. The load-factor for each beam is thus dependent upon its depth and the quantity of metal in its flanges. This load-factor, when divided by the number expressing the clear span in feet, will give as a quotient a number indicating the weight in tons that the beam will carry with safety. For the several beams, the tables show what the proper loads are that may be placed upon them for each foot of clear span.

Stiffness is a different quality from strength. A beam that may be quite strong enough to carry a given load may deflect under this load more than is desirable.

About one-thirtieth of an inch per foot of clear span is the usual maximum of deflexion that is permissible. Under ordinary loads this is attained when the clear span is about twenty-six times the depth of the beam, and the heavy lines in the tables show for each beam where this limit may be found.

Like the load-factor, the bending moment is dependent upon the effective depth and the effective section of the beam to which it is to be applied; the general formula for the deflexion of any beam under an equally distributed load

being
$$\delta' = \frac{.004 \text{ W. L}^3}{\left(a + \frac{a'}{6}\right) d^2}$$
.

By inserting the values proper to each beam, the results given in the following tables have been obtained. For the process of deriving this formula, see page 76 following. A close approximation to the actual deflexion at the centre, under the maximum safe load, may be obtained by dividing the square of the length of the span in feet by 62 times the depth of the beam in inches.

DEFINITION OF TERMS USED IN FORMULÆ.

- W = Equally distributed load on any beam in net tons.
- L = Length of clear span, expressed in feet.
- a = Area of top, or bottom, flange, in square inches.
- a' = Area of stem of beam, in square inches.
- D = Effective depth of beam, expressed in feet.
- d = Effective depth of beam, expressed in inches.
- S = Strain per square inch of effective section $\left(a + \frac{a'}{6}\right)$ in tons of 2000 pounds.
- δ = Deflexion in inches at middle for a central load.
- $\delta' =$ Deflexion in inches at middle for a uniformly distributed load.

General formula for any I beam $W = \frac{8 D (a + \frac{a'}{6}) S}{L}$

	ELE	M	FI	v	rq	Y	_	A F	E				I.	T	X	F	2 F	1.5		ЛС	7		
		IVI			 		0	T.							<u>~</u>	1)[1		J.		
Deflexion	$(a + \frac{a'}{6}) d^2$	1415	1062	884	797	576	444	478	378	327	388	225	193	175	137	114	87	62	49	30	25	16	6
Load Factor.	8 D $\left(a + \frac{a}{6}\right)$ S When S = 6 Tons.	410	302	248	292	208	156	178	155	133	197	108	92	94	74	72	54	45	35	25	21	18	IO
E DEPTH.	d Inches.	13.80	14.04	14.26	I0.92	11.16	II 39	9.62	9.74	9.87	7.90	8.30	8.38	7.37	7.42	6.37	6.44	5.47	5.50	4.60	4.62	3.58	3.65
EFFECTIVE DEPTH.	D Feet.	1.150	I.I70	I.I88	.910	930	.949	.800	.812	.825	.658	169.	.698	.610	.618	.530	.537	.456	.458	.383	.385	.298	.304
NCHES.	Sum of $a + \frac{a'}{6}$	7.428	5 386	4.347	6.684	4.623	3.426	5.166	3.986	3.366	6.224	3.261	2.754	3.225	2.489	2.816	2.100	2.072	I.614	I.400	1.166	1.257	.676
SQUARE INCHES.	a' of Stem.	7.715	6.340	5.710	5.446	4.880	4.119	4.750	3.793	3.400	3.828	2.800	2.238	2.476	2.282	I.900	I.949	I.284	I.I58	I.200	I.000	.730	.682
AREA,	a of Flange.	6.142	4.330	3.395	5.777	3.810	2.740	4.375	3.353	2.800	5.586	2.800	2.38I	2 812	2,109	2.500	I.775	I.858	I.42I	I.200	I.000	I.I35	.562
CHES.	Thickness of Stem.	•65	.50	.42	.59	.49	.38	.50	.44	.37	.60	.40	.3I	.38	.35	.37	.35	.31	.25	.30	.25	.25	.21
DIMENSIONS, INCHES.	Average Thickness of Flange.	1.156	116.	.734	I.050	.802	609.	.875	.745	.640	I.039	.700	.680	.625	.527	.625	.507	•53I	.517	.400	•375	.410	,28I
DIME	Width of Flange.	$5_{\overline{16}}$	44	4 <u>8</u>	5 <u>4</u>	44	4ž	Ŋ	42		5 <u>7</u> 8∣3	4	3 = 1	4 <u>5</u>	4	4	3 <u>1</u>	32	2 45	ŝ	243	243	2
	BEAM.								10 ¹ /2 105														

75

The general formulæ for deflexions given below are taken from Professor Moseley's "Mechanics of Engineering," edited by Professor Mahan, in 1856, changing the letters which he has employed to agree with those used in this work.

Let l = The clear span, in inches.

E = Modulus of elasticity = 24,000,000 pounds = 12,000 tons.

I = Moment of inertia for the several forms.

 $\delta = \text{Deflexion at middle, in inches.}$

W= Load, in tons, producing deflexion.

a = Area, and d = depth of beam, in inches.

Then, for a beam fixed at one end and loaded at the other,

$$\delta = \frac{W l^3}{3 E I}$$

For a beam fixed at one end and uniformly loaded,

$$\delta = \frac{W^{23}}{8 E I}$$

For a beam supported at both ends and loaded at the centre,

$$\delta = \frac{W l^3}{48 E I}$$

For a beam supported at both ends and uniformly loaded,

$$\delta = \frac{5}{8} \times \frac{W^{23}}{48 \text{ E I}}$$

For the several sections of beams the value of I will be as follows :

 $I = \frac{b}{12} \frac{d^3}{I^2} \qquad 4. \quad \text{(r)} \quad I = .7854 (r^4 - r'^4)$ $I = \frac{b}{12} \frac{d^3 - b'}{I^2} \frac{d'^3}{I^2} \qquad 5. \quad \text{(r)} \quad I = \frac{1}{3} \left\{ b d^3 + b' d'^2 - (b' - b) d''^3 \right\}$

3.
$$\bigcirc$$
 I = .7854 r⁴ = $\frac{a r^2}{4}$ 6. $\frac{a r^2}{a r^2}$ I = $\frac{b d^3 - b' d'^3}{r^2}$

By substituting, in formula 6, the effective areas of flange and stem,

$$I = \frac{d^2}{12}$$
 (6 a + a')

Then, for shape 6, supported at both ends and loaded at the centre,

$$b = \frac{W \ 2^{3}}{48 \times 12,000} \times \frac{d^{2}}{12} (6 \ a + a')$$

Substituting 1728 L^3 for l^3 , to express the length of span in feet instead of inches, we have:

$$\delta = \frac{W L^3}{27.78 (6 a + a') d^2} = \frac{.036 W L^3}{(6 a + a') d^2} = \frac{.006 W L^3}{(a + \frac{a'}{6}) d^2}$$

And for shape 6, supported at both ends and uniformly loaded,

$$\delta = \frac{.004 \text{ W L}^3}{\left(a + \frac{a'}{6}\right)d^2}$$

, In this form the formula for deflexion will be found in the table of beams, Table I.

TABLES OF BEAMS,

SHOWING THE PROPER SIZES FOR

Varying Conditions of Loading and Spacing,

WITH THE CORRESPONDING

DEFLEXIONS UNDER THE SAFE LOADS.

7

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

		$\frac{1}{15''}$ 200 Lbs. $V = \frac{410}{L}$	2		89 15" 150 Lbs. $W = \frac{302}{L}$	2	7	$138 \\ 15'' \\ 125 Lbs. \\ v = \frac{248}{L}$	3
Clear Span, in Feet.	Safe Load, Net Tons.	correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wtof Beam, in Lbs.	Safe Load, Net Tons.	correspon'g Deflexion.	Wt. of Beam, in Lbs.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	41.0 37.2 34.2 31.6 29.3 27.4 25.6 24.1 22.8 21.6 20.5 19.5 18.6 17.8 17.1 16.4 15.8 15.2 14.6 14.1 13.7	.116 .140 .167 .196 .227 .261 .296 .334 .376 .419 .463 .510 .560 .612 .667 .725 .7856 .846 .906	1000 1067 1133 1200 1267 1333 1400 1467 1533 1600 1667 1733 1800 1867 1933	30.2 27.4 25.2 23.2 21.6 20.0 18.9 17.8 16.8 15.9 15.1 14.4 13.7 13.1 12.6 12.1 11.6 11.2 10.8 10.4 10.0	.602 .656 .712 .769 .828 .889	500 550 600 700 750 800 900 950 1000 1000 1000 1000 1100 1250 1300 1350 1400 1450 1500	24.8 22.5 20.7 19.0 17.7 16.6 15.5 14.6 13.8 13.0 12.4 11.8 11.2 10.7 10.3 9.9 9.5 9.2 8.9 8.6 8.3	.112 .135 .162 .189 .219 .253 .287 .324 .324 .403 .449 .494 .539 .589 .644 .699 .755 .819 .884	1000 1042 1083 1125 1167 1208

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

	55 12 " 170 Lbs. $W = -\frac{292}{L}$	2		57 12 " 125 Lbs. $W = \frac{20}{L}$	8	,	139 12'' 96 Lbs. $V = \frac{156}{L}$			-
Safe Load, Net Tons.	correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Clear Span, în Feet.	-
29.2 26.6 24.3 22.4 20.9 19.4 18.3 17.2 16.2 15.4 14.6 13.9 13.3 12.7 12.2	.147 .177 .210 .246 .286 .328 .328 .374 .423 .475 .530 .587 .648 .711 .777	567 623 680 737 793 850 907 963 1020 1077 1133 1190 1247 1303 1360	20.8 18.8 17.3 16.0 14.9 13.8 13.0 12.2 11.5 10.9 10.4 9.9 9.4 9.0 8.7	.144 .174 .207 .243 .325 .360 .408 .459 .513 .578 .636 .698 .763 .832	708 750 792 833 875 917 958	15.6 14.2 13.0 12.0 11.1 10.4 9.7 9.2 8.7 8.2 7.8 7.8 7.4 7.1 6.8 6.5	" .140 .170 .202 .237 .252 .316 .351 .407 .457 .537 .562 .617 .685 .744 .809	320 352 384 416 448 480 512 544 576 608 640 672 704 736 768	IO II I2 I3 I4 I5 I6 I7 I8 I9 20 21 22 23 24	
11.7 11.2 10.8 10.4 10.0 9.7	.992 1.068 1.147	1417 1473 1530 1587 1643 1700	8.3 8.0 7.7 7.4 7.1 6.9	.903 .997 1.053 1.131 1.211 1.294	1167 1208	$ \begin{array}{r} 6.2 \\ 6.0 \\ 5.7 \\ 5.5 \\ 5.3 \\ 5.2 \\ \end{array} $.872 .950 1.010 1.087 1.186 1.265	800 832 864 896 928 960	25 26 27 28 29 30	

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

		114 $10 \frac{12'}{135 \text{ Lbs.}}$ $W = \frac{17}{L}$			58 105 Lbs. $W = \frac{15}{L}$			$131 \\ 10\frac{1}{2}' \\ 90 \text{ Lbs.} \\ W = \frac{13}{L}$	
Olear Span, in Feet.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. cf Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.
10 11 12 13 14 15 16 17 18 19 20 21 22	17.8 16.2 14.8 13.7 12.7 11.8 11.1 10.5 9.9 9.3 8.9 8.5 8.1	" .149 .180 .214 .251 .291 .333 .380 .431 .481 .533 .595 .658 .721	450 495 540 585 630 675 720 765 810 855 900 945 990	15.5 14.0 12.9 11.8 11.1 10.2 9.7 9.1 8.6 8.1 7.7 7.3 7.0	".164 .197 .236 .278 .322 .364 .414 .470 .528 .589 .652 .719 .788	350 385 420 455 490 525 560 595 630 665 700 735 770	13.3 12.1 11.0 10.2 9.5 8.8 8.3 7.8 7.4 7.0 6.6 6.3 6.0	" .162 .197 .232 .274 .318 .363 .415 .468 .527 .587 .645 .713 .781	300 330 360 390 420 450 480 510 540 570 600 630 660
23 24 25 26 27 28 29 30	7.7 7.4 7.1 6.8 6.6 6.3 6.1 5.9	.784 .856 .928 1.00 1.08 1.16 1.24 1.33	1035 1080 1125 1170 1215 1260 1305 1350	6.7 6.5 6.2 5.9 5.7 5.5 5.3 5.1	.862 .941 1.025 1.105 1.187 1.271 1.360 1.455	805 840 875 910 945 980 1015 1050	5.7 5.5 5.3 5.1 4.9 4.7 4.6 4.4	.848 .930 1.013 1.096 1.179 1.262 1.372 1.453	690 720 750 780 810 840 870 900

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

Sustaining, with entire safety, a Uniformly Distributed Load.

		4 9'' 150 Lbs. $W = -\frac{197}{L}$			5 84 Lbs. $W = \frac{108}{L}$	3		6 $9''$ 70 Lbs. $W = -\frac{9^2}{L}$	_
Clear Span, in Feet.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.
10 11 12 13 14 15 16 17 18	19.7 17.8 16.4 15.2 14.1 13.2 12.3 11.6 10.9	" .203 .243 .296 .347 .402 .459 .530 .585 .654	500 550 600 650 700 750 800 850 900	10.8 9.8 9.0 8.3 7.7 7.2 6.7 6.3 6.0	" .192 .231 .276 .324 .376 .432 .488 .550 .622	308 336 364 392 420 448 476	9.2 8.4 7.7 7.0 6.7 6.2 5.7 5.4 5.1	" .190 .231 .275 .318 .380 .432 .448 .548 .615	233 256 280 303 326 350 373 396 420
19 20 21 22 23 24 25 26 27 28 29 30	7.6 7·3 7.0	1.07 1.17 1.27 1.38 1.48 1.59 1.70	950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500	5.7 5.4 5.1 4.9 4.7 4.5 4.3 4.1 3.9 3.8 3.7 3.6	.695 .768 .839 .927 I.01 I.10 I.19 I.27 I.36 I.48 I.60 I.73	560 588	4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.5 3.4 3.3 3.2 3.1	.690 .761 .842 .925 I.01 I.08 I.16 I.27 I.38 I.49 I.60 I.73	443 466 490 513 536 560 583 606 630 653 676 700

7*

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

1	113 8'' 81 Lbs. $W = \frac{94}{L}$		1	59 $8''$ $65 Lbs.$ $W = -\frac{74}{L}$			112 $7''$ $69 Lbs.$ $W = \frac{7^2}{L}$	_	
Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Ibs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Ibs.	Clear Span, in Feet.
9.4 8.5 7.8 7.2 6.7	" .215 .258 .308 .361 .420	324 351 378	7.4 6.8 6.2 5.7 5.3	" .215 .264 .312 .365 .424	238 260 282 303	7.2 6.5 6.0 5.5 5. 1	-	253 276 299 3 2 2	10 11 12 13 14
6.2 5.9	.478 .546	405 432	4.9 4.6	·475 •549		4.8 4.5	.568 .645	345 368	15 16
5.5 5.2 5.0 4.7 4.5 4.2 4.1 3.9 3.7 3.6 3.5 3.3 3.2 3.1	.617 .693 .783 .859 .952 I.02 I.14 I.23 I.32 I.44 I.57 I.65 I.78 I.91	486 513	4.3 4.1 3.9 3.7 3.5 3.4 3.2 3.1 2.9 2.8 2.7 2.6 2.5 2.4	.616 .697 .780 .863 .946 1.05 1.13 1.25 1.32 1.43 1.55 1.66 1.77 1.88	390 412 433	4.2 4.0 3.8 3.6 3.4 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4	.724 .818 .914 I.01 I.10 I.32 I.45 I.59 I.72 I.86 2.00 2.14 2.27	414	17 18 19 20 21 22 23 24 25 26 27 28 29 30

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

		7 $7''$ 55 Lbs. $W = \frac{54}{L}$	-		$ \begin{array}{c} 111\\ 6 \\ 50 \text{ Lbs.}\\ W = \frac{45}{L} \end{array} $			8 40 Lbs. $W = -\frac{35}{L}$	
Clear Span, in Feet.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	Correspon'g Deflexion.	Wt. of Beam, in Lbs.
10 11 12	5.4 4.8 4.5	" .248 .293 •357		4.5 4.1 3.7	.290 .352 .412	183	3.5 3.2 2.9	" .286 .348 .410	133 146 160
13 14	4.2 3.9	.423 .491	238 256	3.4 3.2	.481 .566	217 233	2.7 2.5	.486 .562	173 186
15 16 17 18 19 20 21 22 23 24 25 26 27 28	3.6 3.4 3.2 3.0 2.8 2.7 2.5 2.4 2.3 2.2 2.1 2.1 2.1 2.0	.803 .882 .992 1.06 1.17 1.28 1.39 1.50 1.69 1.80	293 311 330 348 366 385 403 421 440 458 476 495	3.0 2.8 2.6 2.5 2.4 2.2 2.1 2.0 1.9 1.8 1.8 1.7 1.6	1.92 2.02	267 283 300 317 333 350 367 383 400 417 433 450	1.6 1.6 1.5 1.5 1.4 1.3 1.3	.636 .738 .805 .907 I.01 I.11 I.21 I.39 I.49 I.58 I.79 I.87 2.09	200 213 226 240 253 266 280 293 306 320 333 346 360
28 29 30	1.8	1.90 2.01 2.23	513 531 550	1.6 1.5 1.5	2.36	467 483 500	1.2	2.15 2.39 2.43	373 386 400

TABLE II.

COMPARATIVE STRENGTH AND STIFFNESS

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE

PHŒNIX IRON COMPANY,

FOR

	106 5″ 36 Lbs. $W = \frac{25}{L}$			105 5" 30 Lbs. $W = \frac{21}{L}$		7	$ \begin{array}{c} 65 \\ 4'' \\ 30 \text{ Lbs.} \\ V = \frac{18}{L} \end{array} $		
Safe Load, Net Tons.	correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Load, Net Tons.	correspon'g Deflexion.	Wt. of Beam, in Lbs.	Safe Luad, Net Tons.	< Correspon'g Deflexion.	Wt. of Beam, in Lbs.	Clear Span, in Feet.
2. 5 2.3	·337 .413	I 20 I 32	2.I I.9	.336 .405		1.80 1.63	.448 .545		IO II
2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.2 1.2 1.1 1.1 1.0 1.0	.466 .563 .667 .774 .885 .995 I.10 I.20 I.29 I.50 I.58 I.80 I.80 I.86 2.11	156 168 180	.90	.471 .563 .660 .757 .854 .945 I.12 I.21 I.28 I.45 I.62 I.75 I.88 2.05	1 30 1 40 1 50	.90 .85 .81 .78 .75	.872 1.00 1.13 1.29		12 13 14 15 16 17 18 19 20 21 22 23 24 25
.95 .92 .90 .86 .83	2.11 2.25 2.44 2.66 2.83 3.20	312 324 336 348 360	.80 •77 •75 .72	2.05 2.25 2.43 2.64 2.81 3.03	250 260 270 280 290 300	.69 .66 .64 .62	2.79 3.01 3.26 3.51 3.77 4.02	250 260 270 280 290 300	25 26 27 28 29 30

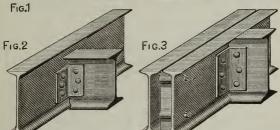
PHIENIX BEAMS.

THEIR ADAPTATION AND DUTY AS FLOORING JOISTS.

Clear Span.	3' apart	3 ¹ / ₂ ' apart	4' apart	4 ¹ / ₂ ' apart	5' apart	$5\frac{1}{2}$ 'apart	6' apart
10 feet.	30 🛛 '	35 □′	40 □′	45 🗆 '	50 0'	55 0'	6 ⇒ ⊡′
Load lbs.	4,200	4.000	5,600	6,300	7,000	7,700	8,400
I		6	"			7 or 8″	
12 feet.	36 ⊡′	42	48	54	60	66	72
Load lbs.	5,040	5,880	6,720	7,560	8,400	9,240	10,080
I	6 0	r 7″		7"	1	8	"
14 feet.	42 0'	49	56	63	70	77	84
Load lbs.	5,880	6,86o	7,840	8,820	9,800		11,760
I		r 8″	,,	8 or 9" 70	, 9,000	9"	
<u> </u>			6		1 0		
16 feet.	48 □'	56	64	72	80	88	96
Load lbs.	6,720 8	7,840	8,960 9 ^{17 70}	10,080 9''	11,200 84	12,320 10 ¹ /2	
	0		9	9		1072	
18 feet.	54 □′	63	72	81	90	99	108
Load lbs.	7,560	8,820	10,080	11,340	12,600		15,120
I	8 or 9″ 70	9″	84		101/2'	/ 105	
20 feet.	60 □′	70	80	90	100	110	120
Load lbs.	8,400	9,800	11,200	12,600	14,000	15,400	
I	9 ⁸⁴ 0r10 ¹ /2		101/2	// 105		12"	125
22 feet.	66 🛛 '	77	88	99	IIO	121	I 32
Load lbs.	9,240	10,780	12,320	13,860	15,400	16,940	-
I		101/2" 105			12" 125		12"170
24 feet.	72 0'	84	96	108	120	7.20	* · · ·
Load lbs.	10,080	11,7бо	13,440	15,120	£	132 18,480	144 20.160
I		12" 125		125		170 or 15	
							· ·
26 feet.	78 □′	91	104	117	130	I43	156
Load lbs. I	10,928 10 ¹ / ₂ 0r12	12,740 12″	14,560	16,380	⁰ or 15"	20,020	21,840 15 ¹¹ 150
1	10/20112	12		12 1	o or 15	100	15. 150
28 feet.	84′ 🗆	98	112	126	140	1 54	168
Load lbs.	11,760	13,720	15,680	17,640		21,560	
I	12" 125 0	r 15 ¹¹ 150	12" 170 0	r 15" ¹⁵⁰	15" 150	15"	200
30 feet.	9⊃ ⊡′	105	120	135	150	165	180
Load lbs.	12,600	14,700	16,800	18,900	21,000	-	25,200
I	12 or 15 ¹⁵⁰	12 ^{1/170} 0	r 15 ^{11 150}	15 ^{11 150}		15 ^{11 200}	

In above table the load is taken at 140 lbs. per 🗆 foot of floor.


STANDARD


BOLTS AND CAST SEPARATORS FOR COMPOUND BEAMS.

	NUMBI	ER	C. to C.	C. to C.	WEIGHT	f in LBS.	SIZES 0	F BOLTS.	Length	0. to 0. of
SIZ	AND E OF B		of Beams.	of Bolts.	Cast Sepa'r.	Two Bolts.	Diam.	Length.	of Sepa'r.	Beam Flanges
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15'' 15 12 12 10 10 10 10 10 9 9 9 9 8 8	150 125 170 125 96 135 105 90 150 84 70 81 65	$\begin{array}{c} 6^{\prime\prime} \\ 5^{4} \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	9'' 9 9 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6	19 17 17 15 15 15 11 11 11 9 9 8 8 8	$3\frac{1}{4}$ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 2 2 4 2 2 2 2	3/// 4 	766766766765		$\begin{array}{c} 11\frac{1}{4}^{\prime\prime} \\ 10 \\ 98\frac{1}{2} \\ 11 \\ 82\frac{1}{2} \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $
2 2 2 2	7 7 6 6	69 55 50 40	$ \begin{array}{c c} 4 \\ 4 \\ 4 \\ 3 \\ \end{array} $	3 3 3 3	7 7 5 5		···· ··· ···	53434 5434 514 514 48	485 383 334 234 24	8 21 21 21 23 4 5 4

STANDARD BRACKETS FOR BEAMS.

Size of		BRACKETS.		BOLTS.	R	IVETS.	Approx Wt. of
Beam.	No.	Size of L	No.	Size.	No.	Size.	1 Set.
$ 15'' \\ 12 \\ 10^{\frac{1}{2}} \\ 9 \\ 8 \\ 7 \\ 6 $	2 2 2 2 2 2 2 2 2	$\begin{array}{c} 4 \\ 3\frac{1}{2} \times 3\frac{1}{2} - 7\frac{1}{2} \\ 3\frac{1}{2} \times 3\frac{1}{2} - 7\frac{1}{2} \\ 3\frac{1}{2} \times 3\frac{1}{2} - 7\frac{1}{2} \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ - 5\frac{1}{2} \\ 3 \\ 3 \\ 3 \\ - 4 \end{array}$	6 6 4 4 4 4	2 ^{//} ^{1/2} ^{1/2}	3 3 3 2 2 2 2 2	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	$ \begin{array}{r} 26 \\ 17 \\ 17 \\ 9 \\ 9 \\ 7\frac{1}{2} \\ 7\frac{1}{2} \end{array} $

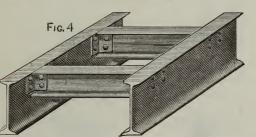
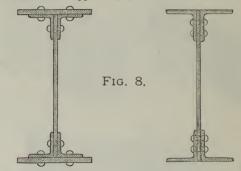
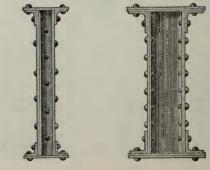


Fig.5





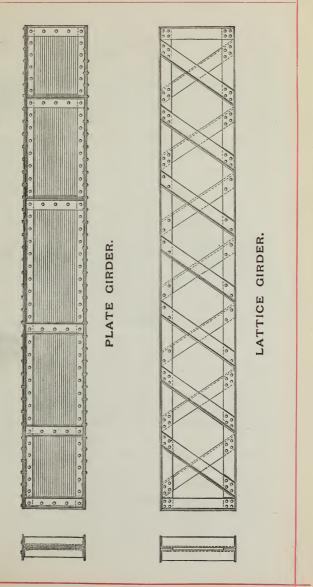
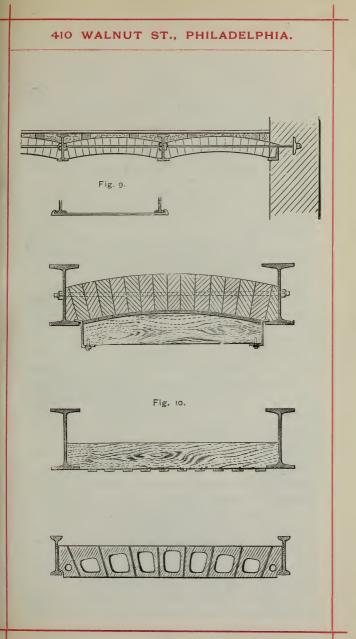

Cases frequently occur in which a column cannot be introduced into the building, and the girder must then be deepened and made strong enough to bear its load without such assistance. For this purpose girders are built of plate and angle irons combined in suitable form to resist the strains induced by the load in the several members, and of depths that vary to suit the special conditions of each case.

Fig. 8 shows the usual form adopted for plate girders. The ends should be further stiffened by vertical members, to resist the shearing strain on the web at the points of support, as shown on opposite page.

Box girders (as below) composed of a combination of plates with angle irons, are also frequently used, and may be built up in sections, varying according to architects' designs.

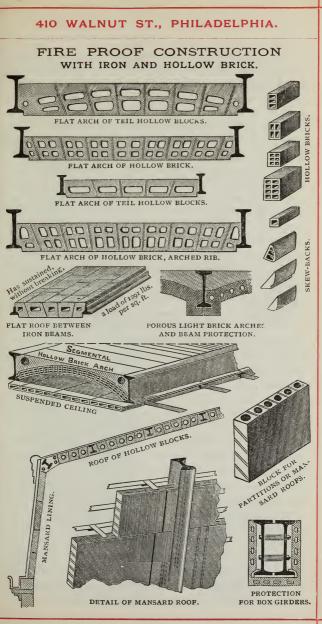


Between the joists the spaces are filled up with brick arches, resting on the lower flanges against cast-iron or brick skew-backs.

The bricks should be moulded with a slight taper to suit the arch, and be laid in place with as little mortar as possible. Above the arch the space is filled with grouting, in which wooden strips $2'' \times 1''$ are bedded for nailing the flooring to. The thrust of the arches is taken up by a series of tie-rods, placed in lines from 6 to 8 feet apart, and usually from $\frac{3}{4}$ to I inch in diameter, as shown in plan (Fig. 9), that run from beam to beam from one end of the building to the other, being anchored into each end wall with stout washers, an angle bar or channel serving as a wallplate for distributing the strain produced by the thrust of the first arch.

Instead of the brick arches corrugated iron is sometimes used to fill in the spaces. It is placed on the lower flanges of the beams and filled in above with cement in place of brickwork.

The centres for turning the arches can be suspended by iron straps hooked on the lower flange, and detachable on one side so that the frames can be shifted from point to point as the work progresses. If a flush surface is preferred for the ceiling, it may be obtained by wedging strips of pine between the beams, and tacking the laths diagonally to the under side of these, finishing with a smooth and fair surface of plastering, and thus entirely concealing the iron-work above. Hollow brick, moulded especially for this class of work, have been used to some extent in the place of solid arching, with the object of diminishing the dead weight. The cost, however, is somewhat greater than solid bricks. Latterly, also, what are called flat arches, made of hollow bricks, have been introduced, the object being to secure a flat ceiling.


The use of hollow bricks and hollow composition blocks of a variety of shapes as a substitute for solid brick arches has become quite general, and illustrations of their useful application in the construction of fire-proof work are shown on the opposite page.

It is evident that the diminution of the dead load to be borne by the iron framing affords quite an advantage and permits of a more economical use of material.

The most effective method of accomplishing this result is to substitute hollow burnt clay brick, or hollow concrete blocks, for the solid common bricks generally employed, thus reducing the dead weight of the arch by 40 to 50 per cent. The hollow brick and blocks may be used either in segmental or flat arches, according to whether a curved or flat ceiling is preferred.

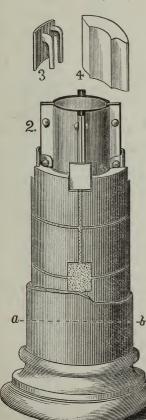
Hollow blocks of burnt fire-clay, purposely made for use in flat arches, are manufactured in quantity in a number of places, and concrete blocks or artificial stone has also been employed with very satisfactory results. The voussoir blocks are cemented together with joints inclined to a common centre as in a segmental arch. The skew-backs of the flat arches take the form of the iron beams against which they rest, and each block keys with the adjacent one, no two joints being allowed to be parallel, as this would endanger the safety of a flat arch. The lower surfaces of the blocks descend about an inch below the flanges of the iron beams, and a thin tile is slipped into place to cover the iron for protection from fire. A coat of cement is then applied to the surface of the entire ceiling, and it is ready to receive any finishing decorative treatment that may be preferred. The upper level of the blocks may be carried up to the top of the iron beams, taking the place of the concrete filling sometimes employed. The iron beams will thus be entirely surrounded by the best known non-conductors of heat, brick or concrete, and will be fully protected from the action of flame, should the combustible contents of a room be accidentally burned.

For large spans a rib is formed in the hollow blocks following the curve of pressure, and this adds very materially

to the strength of a flat arch formed of them. Such arches have frequently been tested with loads of one ton per square foot without failure, and their great strength, in combination with lightness, is of value and importance. But the blocks must be of first-class quality and skilfully placed by competent workmen to obtain the best results from them.

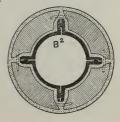
When segmental arches are preferred, hollow brick may, with advantage, be substituted for the ordinary solid bricks, diminishing the dead load to some extent. Suspended ceilings of hollow blocks $I_{1/2}$ to 2 inches thick are sometimes employed. The blocks are supported on bars of \bot and L iron placed about 16 inches apart and hung from the floor beams by suitable hooks and clamps. The suspended ceiling is fire-proof in itself when coated with a covering of cement, and by means of the air space above it very thoroughly protects the floor beams from the effects of heat in the room below. Similar hollow blocks, well cemented together and bound with hoop iron about the flanges, are also used to protect box-girders from the effects of heat.

For making a finish inside the slating, and for lining Mansard roofs between the iron beams, hollow blocks 2 to 4 inches thick have been employed with excellent results. The blocks are usually cemented together and fastened to the purlins by small flat iron hooks, leaving a hollow space between the slating and the fire-proof hollow wall, the inner surface being smoothly plastered and finished.


Similar construction would be well adapted to vaults, domes, and the lining of refrigerator walls, where the nonconduction of heat is of importance. Rooms thus protected are dry and comfortable under any circumstances, being cool in summer and warm in winter. Hollow blocks are in very general use also for partitions in buildings, and when used in connection with floors of iron beams, protected by arches of the construction just described, they divide a building into a number of fire-proof compartments. If a fire originates in any one of these it is prevented from extending to the contents of the entire structure, and time is afforded for its easy extinction without risk of extensive damage by water or of injury to any part of the building itself.

PHŒNIX PATENT WROUGHT IRON COLUMNS,

AND


Method of Fire-Proofing and Preparing for Smooth Finish by Wight's Patent Process.

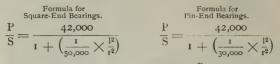
By the use of a non-conducting and incombustible casing Phœnix columns can be made thoroughly secure from the effects of expansion caused by fire in the combustible contents of rooms. They may, by the same means, be given

any desired form and prepared for an exterior surface finish of cement.

This cement finish may be in any desired color or may be highly polished to resemble marble. The process of protecting the columns consists in the use of terra-cotta blocks moulded to fit between the flanges of the segments, bedded in place with cement mortar, and secured by countersunk iron plates hooked over the rivet-heads of the columns. Fig. 2 is a perspective view of such a column, showing the various stages of completion.


COLUMNS.

Wrought-iron columns are coming into more general use in the construction of buildings, both on account of the saving of space that they afford when compared with heavy walls of masonry, and because of the great loads that are now to be provided for in large fire-proof buildings. In the latter case cast-iron columns are generally more costly, and neither so safe nor so durable in the event of fire. The Phœnix column of wrought-iron segments, circular in section, provides the maximum of strength with the minimum of weight in the column itself.

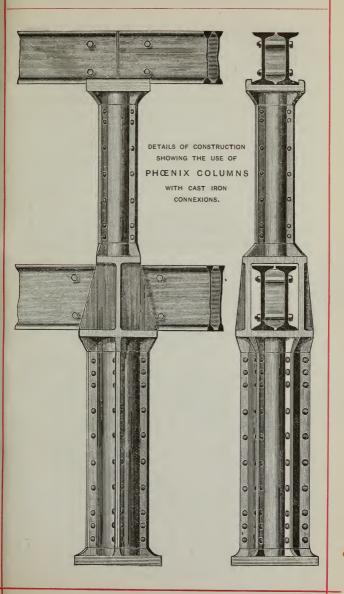

To carry a given load, it requires the employment of the least amount of metal, and, on account of the simplicity of its construction, it is the cheapest as well as the best column in the market.

Whenever Phœnix columns are employed, the interior surfaces are thoroughly painted before the segments are riveted together. Such columns have been inspected after twenty years of service, and, although they had occupied the most exposed situations, they have been found uninjured by rust and with the paint still performing its duty as a protector. To determine the value of Phœnix columns under loads, a series of tests have been made at various times, the most noteworthy, probably, being those made on the Government machine at Watertown Arsenal, Massachusetts, in 1879, upon a set of full-sized Phœnix columns, of lengths ranging from 6 diameters to 42 diameters. Twenty C columns, each of about 12 square inches sectional area, were thus tested, and from these experiments the following formulæ have been deduced, which closely correspond with

C

the actual results obtained, and show correctly the value of the form of the Phœnix column:

In these formulæ the expression $\frac{P}{S}$ represents the total load in pounds sectional area in square inches; or, in other words, the crushing strain per square inch of section. I is the length in feet between bearings, and r is the least radius of gyration. Applying these formulæ to the several patterns of segmental columns, the table of allowable working strains per square inch of section, shown below, has been prepared; the allowable working strains being, in each case, about one-fourth of the ultimate strength of the column.


ALLOWABLE

WORKING LOADS FOR PHEENIX COLUMNS. In Pounds per Square Inch of Sectional Area.

					and the second se	
Length in Feet.	Col. A.	Col. B ¹ .	Col. B ² .	Col. C.	Col. E.	Col. G.
in Feet. 10 12 14 16 18 20 22 24 26 28 30 32 34 36	9323 8885 8420 7943 7463 6997 6526 6090	9833 9564 9267 8944 8610 8260 7906 7550 7201 6860 6527 	10,024 9,830 9,607 9,364 9,105 8,830 8,541 8,250 7,955 7,660 7,366 7,075	10,195 10,067 9,924 9,783 9,575 9,386 9,185 8,973 8,973 8,973 8,527 8,297 8,297 8,297 8,297 7,837 7,604	10,351 10,288 10,215 10,131 10,037 9,935 9,824 9,705 9,824 9,705 9,580 9,450 9,450 9,314 9,170 9,021 8,870	10,411 10,371 10,326 10,275 10,216 10,152 10,082 10,005 9,926 9,841 9,750 9,654 9,555 9,441
38 40				7,375 7,147	8,717 8,561	9,341 9,235

Square-End Bearings.

98

TABLE OF DIMENSIONS OF PHŒNIX COLUMNS.

The dimensions given in the following table are subject to slight variations, which are unavoidable in rolling iron shapes.

The weights of columns given are those of the 4, 6, or 8 segments, of which they are composed. The *shanks* of the rivets used in joining the segments together only make up the quantity of metal removed in making the holes, but the *rivet-heads* add from 2 to 5 per cent. to the weights given. The rivets are spaced 3, 4, or 6 inches apart from centre to centre, and somewhat more closely at the ends than towards the centre of the column.

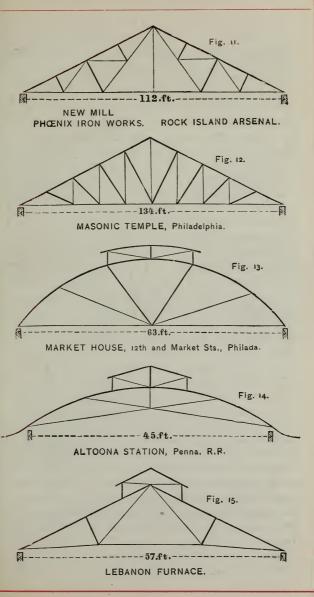
Any desired thickness between the minimum and maximum for any given size can be furnished. G columns have 8 segments, E columns 6 segments, C, B², B¹, and A have 4 segments.

	ŝ	DIAMETERS IN INS.			01			
MARK.	THICKNESS.	d Inside.	D Out- side.	D1 Over Flanges	Area of Cross Section. Sq. Inches.	Weight per Foot in Pounds.	Least Radius of Gyration. Inches.	SIZE OF RIVETS.
A	3 6 1-4-5 6 1-3/8	3 ⁵ / ₈ 	$\begin{array}{c} 4 \\ 4\frac{1}{8} \\ 4\frac{1}{4} \\ 4\frac{3}{8} \end{array}$	$\begin{array}{c} 6\frac{1}{16} \\ 6\frac{3}{16} \\ 6\frac{5}{16} \\ 6\frac{5}{16} \\ 6\frac{7}{16} \end{array}$	3.8 4.8 5.8 6.8	12.6 16.0 19.3 22.6	1.45 1.50 1.55 1.59	$\frac{3}{8} \times \frac{11}{18}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$
B ¹	310 14 510 32 14 510 32 710 12 910 52 1 1 3 8 7 10 10 91 53 8 7 10 10 91 53	4 <u>13</u> 	$5\frac{5}{16}5\frac{7}{16}5\frac{9}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}5\frac{11}{16}$	8 14 3 8 7 16 8 8 14 3 8 7 16	6.4 7.8 9.2 10.6 12.0 13.4 14.8	21.3 26.0 30.6 35.3 40.0 44.6 49.3	I.92 I.96 2.02 2.07 2.11 2.16 2.20	$\frac{\frac{1}{2} \times 153}{14}$ $\frac{1}{2} \times 158$ 1334 134 178 178 2 2 $2\frac{1}{8}$
B ²	145 6387 6 129 0 58	5 <u>15</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u>	$\begin{array}{c} 6\frac{7}{16} \\ 6\frac{9}{16} \\ 6\frac{11}{16} \\ 6\frac{13}{16} \\ 6\frac{13}{16} \\ 6\frac{15}{16} \\ 7\frac{1}{16} \\ 7\frac{3}{16} \\ 7\frac{3}{16} \end{array}$	$9\frac{1}{5}$ $9\frac{1}{5}$ $9\frac{1}{5}$ $9\frac{5}{12}$ $9\frac{5}{12}$ $9\frac{5}{12}$ $9\frac{1}{16}$	7.4 9.0 10.6 12.2 13.8 15.4 17.0	24.6 30.0 35.3 40.6 46.0 51.3 56.6	2.34 2.39 2.43 2.48 2.52 2.57 2.61	$ \frac{\frac{1}{2} \times 158}{14} \\ \frac{1}{2} \times 158} \\ \frac{1}{1} \\ \frac{1}{3} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{1} \\ \frac{1}{8} \\ 1$

Least Radius of Gyration equals $D \times .3636$.

100

	THICKNESS.	DIAM	DIAMETERS IN INS.			ONE COLUMN.		
MARK.		d Inside.	D Out- side.	D1 Over Flanges	Area of Cross Section. Sq. Inches.	Weight per Foot in Pounds.	Least Radius of Gyration. Inches.	SIZE OF RIVETS.
C	$\frac{145}{100} \frac{5}{100} \frac{10}{100} \frac{100}{100} \frac{100}{$	$7\frac{3}{16}$	$\begin{array}{c} 7\frac{1}{163}\frac{1}{6}\frac{1}{6}\frac{3}{6}\frac{1}{6}\frac{1}{6}\frac{3}{6}\frac{1}{6}\frac{1}{6}\frac{3}{6}\frac{1}{6}\frac{1}{6}\frac{3}{6}\frac{1}{6}\frac{1}{6}\frac{3}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{3}{6}\frac{1}{6$	$\begin{array}{c} 11\frac{9}{116}\\ 11\frac{9}{16}\\ 11\frac{1}{16}\\ 11\frac{1}{16}\\ 11\frac{1}{16}\\ 11\frac{1}{16}\\ 11\frac{1}{16}\\ 12\frac{1}{16}\\ 12\frac{1}{16}$	10.0 12.0 14.0 16.0 19.2 21.2 23.2 25.2 27.2 29.2 33.2 37.2 41.2	33·3 40.0 46.6 53·3 60.0 64.0 70.6 77·3 84.0 90.6 97·3 110.6 124.0 137·3	2.80 2.85 2.90 2.94 2.98 3.03 3.03 3.12 3.16 3.21 3.26 3.34 3.43 3.52	$ \sum_{\frac{5}{20}} \frac{17676}{2} \frac{1}{2} $
E	$\frac{1+5}{1}\frac{10}{3}\frac{3}{10}\frac{7}{1}\frac{1}{1}\frac{1}{12}\frac{9}{1}\frac{10}{15}\frac{1}{3}\frac{1}{10}\frac{3}{3}\frac{4}{1}\frac{30}{1}\frac{1}{18}\frac{1}{14}$	II 	$\begin{array}{c} I I \frac{1}{2} 1$	$\begin{array}{c} 15\frac{7}{16}\\ 15\frac{9}{16}\\ 15\frac{11}{16}\\ 15\frac{11}{16}\\ 15\frac{13}{16}\\ 16\frac{1}{16}\\ 17\frac{3}{16}\\ 17\frac{3}{16}\\ \end{array}$	16.8 19.2 21.6 24.0 26.4 28.8 31.8 37.8 40.8 43.8 49.8 55.8 61.8	56. 64. 72. 80. 88. 96. 116. 126. 136. 136. 146. 186. 206.	4.18 4.23 4.28 4.32 4.36 4.40 4.45 4.55 4.60 4.55 4.60 4.64 4.73 4.82 4.91	$ \begin{array}{c} 5 \\ 5 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
G	$\frac{1}{16} \frac{1}{129} \frac{1}{16} \frac{1}{129} \frac{1}{16} \frac{1}{16}$	I4 ³ /8 46 46 46 46 46 46 46 46 46 46	$\begin{array}{c} 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\$	$\begin{array}{c} 1.10\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 2.08\\$	24. 28. 32. 36. 40. 44. 48. 52. 56. 60. 68. 76. 84. 92.	80.0 93.3 106.6 120.0 133.3 146.6 160.0 173.3 186.6 200.0 226.6 253.3 280.0 306.6	5.45 5.50 5.55 5.59 5.63 5.68 5.72 5.77 5.82 5.87 5.95 6.04 6.14 6.23	$\begin{array}{c} 3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\$

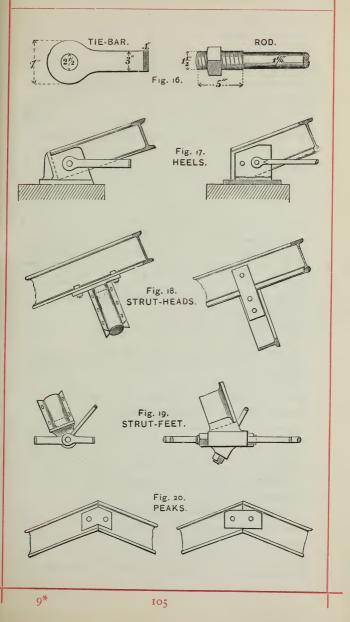

ROOFS.

Iron trusses for rafters have been rapidly growing into favor with architects of late, owing in large measure to the combined lightness, strength, durability, and consequent economy of such structures. Various forms have been proposed for the trusses, some of the best known of which are here shown.

Figs. 11 and 15 are familiar illustrations. Fig. 12 shows the modification of the ordinary King and Queen truss as adapted to wrought iron, and Figs. 13 and 14 give examples of arched trusses that have been employed to cover depots and market-houses when a pleasing shape has been sought for the general outline of the building. For simplicity and economic arrangement of material, the design exhibited in Figs. 11 and 15 offers advantages over either of the other forms, and is most generally adopted in practice.

For the principals, \mathbf{T} or \mathbf{I} beams make very good rafters, and in light trusses \mathbf{T} bars, or two channel bars \mathbf{I} either with or without a plate riveted to the upper flanges, answer every purpose. Struts may be made of light columns \mathbf{X} A or B, of \mathbf{T} bars, or of angle iron \mathbf{I} , any of these forms affording great facility for attachment to the rafters.

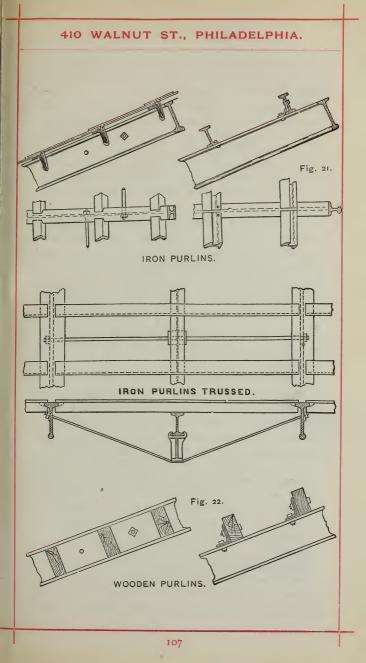
For arched roof trusses the details of construction are very similar to those described for peaked roofs; but as they are capable of great variety of treatment, the best illustrations that can be given of their forms will be by referring to Figs. 13 and 14—the highly ornamental and substantial roofs constructed by the Phœnix Iron Company for the market-house corner of Twelfth and Market Streets, Philadelphia, and for the station-shed at Altoona, on the Pennsylvania Railroad. These instances show the wide range of which the subject is susceptible.



Ties may be of flat or round bars, attached by eyes and pins or screw ends. Care should be especially taken to properly proportion the dimensions of eyes and pins to the strains upon them. A very good and safe rule in practice is to make the diameter of the pin from $\frac{3}{4}$ to $\frac{4}{2}$ of the width of the bar in flats, and I_{Λ}^{1} times the diameter of the bar in rounds, giving the eve a sectional area of 50 per cent. in excess of that of the bar. The thickness of flat bars should be at least one-fourth of the width, in order to secure good bearing surface on the pin, and the metal at the eves should be as thick as the bars on which they are upset. Eyes are forged on the ends of flat or round bars by hydraulic pressure in suitably shaped dies, and, while the risk of a welded eve is thus avoided, a solid and well-formed eve is made from the iron of the bar itself. A similar process is adopted for enlarging the screw ends of long rods, so that when the screw is cut the diameter at the root of the thread is left a little larger than the body of the rod. Frequent trial with such rods has proven that they will pull apart in tension anywhere else but in the screw, the threads remaining perfect, and the nut turning freely after having been subjected to such a severe test. By this means the net section required in tension is made available with the least excess of material, and no more dead weight is put upon the structure than is actually required to carry the loads imposed.

The details of roof trusses vary to suit the character of the work and the sections of iron employed.

The heel of the rafter rests on the wall, either in a castiron skew-back fitted to the beam, and sloping to the angle required by the pitch of the roof, or between a couple of wrought angle-brackets riveted to the end of the rafter and resting on a wall-plate anchored to the wall. The struts are attached to the rafters by cast caps or by wrought strapplates, and the joint at their feet is easily made either for pin or screw connexions. The peak is joined by wrought plates and bolts, the beams having been cut to the required angle.

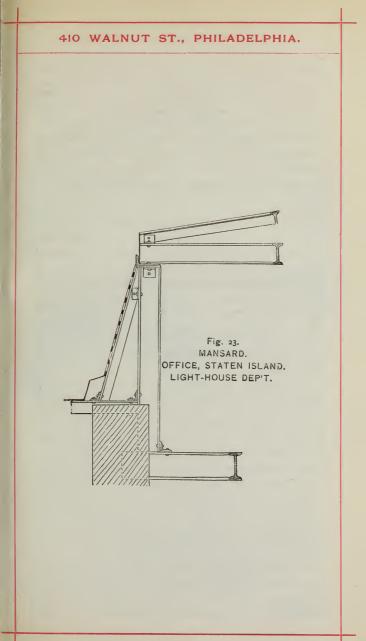

Main rafters may be spaced from four to twenty feet apart, the spacing being regulated by the size of the purlin,

and this again by the material used for covering. For slate on iron purlins a convenient spacing is about eight feet between centres of rafters, the angle-iron purlins being put at seven to fourteen inches apart, according to the size of the slate used, and notched at the ends into the flanges of the rafters. They are held in place by tie-rods that reach from rafter to rafter the entire length of the building. three or four rows of these rods being placed between peak and heel, at from six to eight feet intervals. On the iron purlins the slate may be laid directly and held down by copper or lead nails, clinched around the angle-bar, as shown in Fig. 21; or a netting of wire may be fastened to the purlins, and a layer of mortar spread on this, in which the slates are bedded. When greater intervals are used in spacing rafters, the purlins may be light beams fastened on top or against the sides of the principals with brackets, allowance always being made for longitudinal expansion of the iron by changes of temperature. On these purlins are fastened wooden jack-rafters carrying the sheathing-boards or laths, on which the metallic or slate covering is laid in the usual manner, or sheets of corrugated iron may be fastened from purlin to purlin, and the whole roof be entirely composed of iron.

When the rafters are spaced at such intervals as to cause too much deflexion in the purlins, they may be supported by a light beam, placed midway between the rafters and trussed transversely with posts and rods. These rods pass through the rafters, and have bevelled washers, screws, and nuts at each end for adjustment. By alternating the trusses on either side of the rafter, and slightly increasing the length of the purlins above them, leaving all others with a little play in the notches, sufficient provision will be made for any alteration of length in the roof, due to changes of temperature.

When wooden purlins are employed they may be put between the rafters and held in place by tie-rods, or on top and fastened to the rafters by brackets; or hook-head spikes may be driven up into the purlin, the head of the spike hooking under the flange of the beam, spacing pieces of

wood being laid on the top of the beam from purlin to purlin. The sheathing-boards and covering are then nailed down on top of all in the usual manner.

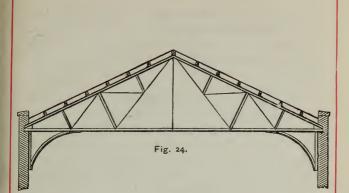

When desired, ventilators or lanterns are added along the ridge of the roof, as seen in Fig. 15, the attachments being securely made to the rafters by wrought brackets and bolts, and the bracing effected in a cheap and thorough manner by two tie-rods that run from the peak of the rafter to the angle between the post and rafter of the ventilator, the covering material being attached as described for the main rafters.

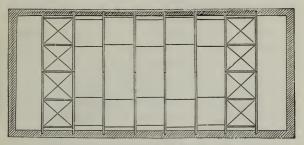
When it becomes desirable to suspend a ceiling from the rafter, the tie-rods are replaced by a beam, and the ceiling is attached to the lower flanges, curved \top bars at the cornice serving to give any ornamental finish to the interior that may suit the design of the architect.

For Mansard-roofs short additional beams are allowed to project beyond the walls, and on these rest the feet of the

T bar or **[** bar framing, well fastened by wrought brackets and bolts. On the framing are secured the $I\frac{1}{2} \times \frac{3}{8}$ inch laths for attachment of the slate or metal covering, and with a cornice of galvanized sheet iron perfect immunity from fire may be secured. This form of roof work in wrought iron admits also of great scope for ornamental design, but from the amount of work required it becomes rather more expensive than the less intricate combinations, and, as no two are alike in point of detail, it is difficult to estimate the cost of construction. Curving, shaping, and jointing the many pieces must be carefully done to secure the close fitting that is requisite, and practical experience in such work is of very great advantage to the builder. (The roof of the new post-office in New York is a very good illustration of the peculiarities of this class of work.)

In Fig. 24 the purlins of angle-iron carry wooden strips, to which are nailed the sheathing-boards and covering material. A netting of wire may be used to attach the plastering to the lower flanges of the tie-beams, or light



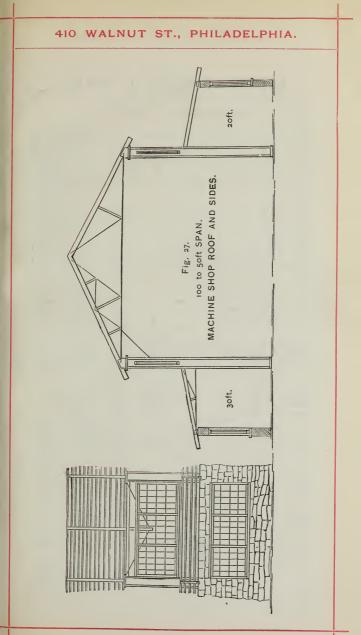

arches of tiles or hollow bricks may be turned on the lower flanges of smaller transverse beams as described for floors.

In roofs of wide span provision for expansion of the iron due to changes of *temperature* may be made by resting the skew-back of one end of the truss on a cast wall-plate, with rollers interposed to permit of the sliding of the heel without straining the wall, as in Fig. 25, but this precaution is not necessary in roofs of sixty feet span or less. Careful experiments have proved that an iron rod one hundred feet long will vary about $\frac{1}{10}$ of a foot for a change of temperature of 150 degrees Fahr., and as this is the greatest range to which iron beams and rods in a building would probably be subjected in this climate, compensation to that amount would be sufficient for all purposes. For sixty feet span the vibration of each wall would then be only $\frac{15}{1000}$ of a foot either way from the perpendicular, a variation so small and so gradually attained that there is no danger in imposing it upon the side walls by firmly fastening to them each heel of the rafter. Expansion is also provided against by fastening down one heel with wall-bolts and allowing the other to slide to and fro on the wall-plate without rollers, as shown in Fig. 17.


In estimating the strains on roofs the weight of the structure itself as well as the loads to be supported must be taken into account. Tredgold's assumption of the total maximum vertical load at forty pounds per square foot of horizontal surface is usually considered sufficiently high; but if a floor or ceiling is suspended to the tie-beam, or should the under side of the rafters be boarded and plastered, it is evident that these additional weights require more strength in the roof for their support.

For ordinary roofs of short span thirty pounds per square foot is quite enough, however, and for long spans, over sixty feet, thirty-five pounds will be sufficient to provide for, with the factors of safety in the material that are usually adopted. The stresses upon each member of the truss having been determined by any of the methods of calculation preferred, the sectional areas may be found by taking the safe tensile strength of good wrought iron at 10,000 pounds per square

FRAMING and BRACING OF ROOF, Fig. 26.


inch, and the compressive resistance of beam or shape iron at from 6000 to 8000 pounds for the same unit of section.

It should be noted that the smaller or counterbrace rods ought to be made strong enough to resist strains induced by wind pressure on one side of the roof only,—the other half being unloaded.

Lateral braces, as in Fig. 26, should be provided in each end panel of straight roofs, as well to secure the roof during erection as to provide an abutment that will uphold the whole in case of fire or accident. From the panels so braced tie-rods run to each of the other rafters, and, with the purlins, unite the roof into a firm and compact whole. The gable walls are sometimes used to anchor the end rods into, but the method shown in the figure is that which is generally preferred.

A very economical combination of iron rafters with wrought-iron posts is shown in Fig. 27, this arrangement being well adapted for machine-shops, foundries, or other buildings in which it is desirable to cover a large area, and also to have an ample supply of light on the floor.

The posts on each side are placed from sixteen to twenty feet apart, and the heel of the intermediate rafter is supported by a trussed beam attached to the heads of the posts, the sheds on either side being covered by beams, trussed or untrussed, as the length of span may require. The skewback of the rafter and the cap of the post are cast in one piece, and all of the details of attachment between the parts are made in an equally simple and substantial manner. As a round-house for locomotives, or for many other purposes connected with railroad management, shops arranged on this plan commend themselves to the attention of engineers and master-mechanics, and for private establishments they have been found to answer their purpose admirably well, giving the maximum of surface covered at the minimum of first cost.

RECORD OF TESTS OF BEAMS.

TRANSVERSE STRENGTH.

As trustworthy data on which to base calculations for the efficiency of beams under transverse strain the tables given below are now published, having been the result of carefully conducted experiments on the part of the Phœnix Iron Company.

From these tables have been ascertained the coefficients for the safe load of each beam, so that it will be seen that dependence has not been placed merely on theoretical formulæ in assigning these values, but the truth of these formulæ has been demonstrated by the test of actual experiment.

60 Lbs. p	7-inch er Yard. Clear Spar	Area, 6 S	-	9-inch Beam. 87 Lbs. per Yard. Area, 8.7 Sq. Inches. Clear Span, 21 Feet.			
Centre Load, in Lbs.	Deflex- ion, Inches.	In- crease, Inches.	Remarks.	Centre Load, in Lbs.	Deflex- ion, Inches.	In- crease, Inches.	Remarks.
2,000 3,000 4,000	.468 .743 1.020	·275 .277		2,000 4,000 6,000	.228 -474 .720 .962	.246 .246 .242	
5,000 6,000	1.298 .029 { 1.578	set. rem .280	Verm. Wt. 10,000 1.20 set. rem'd. .04 .04 280 .04 .04 .04 erm. Wt. 12,000 1.43 .04 set. rem'd. .04 .04 309 .04 .04 .04	8,000 10,000	.048	.239 Perm. set.	Wt. rem'd.
7,000	.030 { 1.887	Perm. set. .309 Perm.		1.432 .050 { 1.580	.231 Perm. set. .148	Wt. rem'd.	
8,000	.060 { 2.300 .183 {	set. .413 Perm.	rem'd. Wt.	13,000	.117 { 1.863	.148 Perm. set. .283	Wt. rem'd.
9,000 9,500	3.540 5.298	set. 1.240 1.758	rem'd.	16,000	.269 { 3.256	Perm. set. 1.393	Wt. rem'd.
10,000			Beam sunk slowly, top flange yielding.	17,000	5.233	1.977	Side deflexion begins.
,				17,500	5.602	. 369 {	Beam yields slowly at this load

150 Lbs. p	er Yard.	h Beam. Area, 15 an, 14 Feet.	-	200 Lbs. 1	15-inch Beam. O Lbs. per Yard. Area, 20 Sq. Inches. Clear Span, 14 Feet.			
Centre Load, in Lbs.	Deflex- ion, Inches.	In- crease, Inches.	Remarks.	Centre Load, in Lbs.	Centre Load, Tons.	Deflex- ion, Inches.	In- crease, Inches.	
5,668 6,720 7 840 8,960 10,080 11,200 13,440 14,560 15,680 16,800 17,920 19,040 20,160 21,280 21,280 21,280 21,280 23,526 24,640 25,760 26,880 28,000 29,120	.102 .126 .148 .170 .192 .214 .239 .261 .287 .336 .336 .339 .382 .409 .435 .458 .457 .516 .572 .600 .633 .682 .082	.024 .022 .022 .022 .025 .026 .023 .026 .023 .026 .023 .026 .023 .026 .023 .029 .029 .029 .029 .029 .029 .038 .033 .049 .049 .049 .049 .049 .049 .049 .049	load left stand 34 hour. Wt.rem.	6,720 8,960 11,200 23,440 15,683 17,920 20,160 22,400 24,640 26,880 29,120 31,360 33,660 33,660 33,660 33,840 40,329 44,800 44,9000 44,9000 44,9000 44,9000 44,9000 44,9000 44,90000 44,90000 44,90000000000	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 removed of on replaced of .222 it	.048 .060 .073 .090 .105 .120 .134 .148 .161 .178 .191 .206 .222 .234 .246 .258 .271 .287 .305	.012 .013 .017 .015 .014 .014 .013 .017 .013 .015 .016 .012 .012 .012 .012 .012 .018 .018 .018 .018 .018 .018 .018 .019 .019 .015 .016 .018	
125 Lbs. pe	r Yard.	ch Beam. Area, 12½ an, 27 Feet.	Sq. Inches.	155 Lbs. p	er Yard.	ch Beam. Area, 15 ¹ /2 an, 27 Feet	§ Sq. Inches.	
Centre Lo in Lbs		eflexion, nches.	Increase, Inches.				Increase, Inches.	
6,720 7,840 8,960 10,086 11,200 12,320 13,340 14,560 15,680 15,680 16,800 17,920 20,760 20,720		.691 .821 .948 .061 .186 .328 .466 .630 .800 .976 .228 .455 .742 .900 .965	.130 .127 .113 .142 .138 .164 .176 .176 .252 .227 .287 .158 .065	7,844 8,966 11,200 12,320 13,446 14,566 15,686 16,800 17,926 19,046 22,400 24,640	Centre Load, in Lbs. Deflexion, Inches. Increase, Inches. 6,720 542 7,840 402 6,720 542 7,840 402 10,080 523 11,200 580 12,320 639 13,440 .707 15,680 845 17,920 .992 13,680 .913 .668 .071 15,680 .845 .792 .992 .079 .068 17,920 .992 .071 .068 22,400 1.309 .160 .149 .086 .057 .020,100 .160 .053 .091			

RECORD OF TESTS OF PHŒNIX COLUMNS

Made with Hydraulic Press, 260 D" Piston Area.

SIZE.	Length.	Ratio of Length to Diameter.	Ratio of Length to Diameter. Net Area, Square Inches.		Total Pressure on Piston, in Pounds.		Actual Ultimate Strength of Column per Square Inch.		by Gordon's Formula.	Shape of End Bearings.
May	/ 3, 18	373.								and the second s
\mathbf{B}^1 \mathbf{B}^1 \mathbf{A}	8'' 8'' 4''	1.46 1.46	6.97 6.97 5.62	422 421	500 200	60	573 387 867	35	974 974	66
A A	4'' 4''	0.92 0.92 1.01	5.62 2.92	370 370 166	500 500 400	65 56	867 889	35 35 36	990 990 000	66 66
A B ¹ C C	4'' 23.8' 24.' 23.3' 22.8'	1.01 53.5 53.6 35.9 35.0	2.92 5.84 5.95 10.53 8.50	162 176 97 383 325	500 800 500 500	16 36	555 274 387 419 235	36	000 430 457 182 562	" Round. Flat.
July			0.90	323	000	30	~33	23	302	
C C	23.2' 23.2	34.5 34.5	13.31 12.85	436 455	800 000	32 35	742 408		774 774	66 66
Jun	e 2, 1	875.								
C C	27' 27	39.9 39.9	13.70 13.89	422 302	400 400		000 700		415 420	" Round.
Aug C C	28′ 28′ 28	3 75. 40.7 40.7	13.58 13.58	4 72 497	584 028	34 36	800 600	23 23	165 165	Flat.
	Q									
The	breaki	ng-loa	dofa		ofv	vro	ught	irc	00 01	inch

The breaking-load of a bar of wrought iron one inch square 12'' c. to c. of points of support is just 2240 pounds.

NOTES

CONCERNING SPECIFICATIONS OF QUALITY FOR IRON.

The tensile strength of iron is properly determined by ascertaining the load under which permanent set takes place, and the amount of stretch under the proof load, rather than from the ultimate load that causes the fracture of the bar. In other words, *the elastic limit* rather than the breaking strain should be regarded as the measure of quality in a bar, and working loads should be proportioned with reference to the elastic limit instead of to the so-called *ultimate strength*.

Tough, sinewy iron is what is required in a tension bar, and although a hard, unyielding iron may show greater ultimate strength under a gradually applied strain, yet it is not suitable for use under tension for the reason that a sudden shock may cause it to snap under a weight that it ought to carry with entire safety.

Good bar iron should be of uniform character and possess a limit of elasticity of not less than 25,000 pounds per square inch. The ultimate resistance of prepared testbars having a sectional area of about one square inch for a length of 10 inches should be not less than 50,000 pounds per square inch when the test-bars have been prepared from full-sized bars having not more than 4 square inches of sectional area. For each additional square inch of fullsized bar area above 4 square inches a reduction of 500 pounds per square inch may be allowed down to a minimum ultimate resistance of 46,000 pounds. The amount of stretch under the breaking load should be not less than 15 per cent, in 10 inches of the test-bar.

Bars that are to be used in tension should stand, without cracking, a cold bending test to 90 degrees to a curvature the radius of which is about the thickness of the bar under test, and at least one-third of the lot should stand bending to 180 degrees under the same conditions.

A round bar, one inch in diameter, should bend double, cold, without signs of fracture. A square bar of the same quality may show cracks on the edges under such a test.

Under a breaking pull the reduction of area should be not less than 25 per cent. of the original section.

The shape of a bar has much influence in determining the breaking-strain. The ultimate strength of round bars is, for this reason, considerably greater than that of flat bars, but in either case the elastic limit will be found to occur at about the same point for equally good qualities of iron.

Within the elastic limit the extension of iron may, for all practical purposes, be stated as follows:

Wrought iron, $\frac{1}{10000}$ of its length per ton per square inch.

Cast iron, $\frac{1}{5000}$ of its length per ton per square inch.

The compression of wrought iron within the limits of elasticity follows the same law, and the amount of shortening under pressure will be in direct proportion to the weight applied. But with cast iron the amount of compression does not follow a constant ratio, the compression per ton becoming greater with the increase of the weight. Thus, a cast iron bar, one square inch in section was compressed $\frac{1}{5900}$ of its length by a load of one ton; but under a load of 17 tons, instead of being compressed $\frac{17}{5900}$, it was compressed $\frac{29}{5900}$.

THE MODULUS OF ELASTICITY is a term used to designate such a *weight* as would extend a bar through a space equal to its original length, supposing the elasticity of the bar to be perfect. Or, the modulus of elasticity of any given material in *feet* is the height in feet of a column of this material, the weight of which would extend a bar of any determinate length through a space equal to this length. Thus, if one ton extends an inch bar of wrought iron one ten-thousandth of its length, it is evident that, upon the

supposition that the bar is perfectly elastic, 10,000 tons would extend it to twice its original length. Hence, on this assumption, 10,000 tons, or 22,400,000 pounds, will be the modulus of elasticity of the wrought iron stated in *weight*. But an inch bar of wrought iron to weigh 22,400,000 pounds, at $3\frac{1}{3}$ pounds per foot, would be 6,720,000 feet long, and this would express the modulus of elasticity in *feet*.

The modulus of elasticity will, of course, vary according to the character of the material tested, being much higher in the better than it is in the lower grades of iron, but it forms a very useful and convenient standard of comparison in determining quality.

KIRKALDY'S CONCLUSIONS.

Mr. Kirkaldy sums up the results of his experimental inquiry in the following concluding observations, which the student should study carefully:

I. The breaking-strain does *not* indicate the quality, as hitherto assumed.

2. A *high* breaking-strain may be due to the iron being of superior quality, dense, fine, and moderately soft, or simply to its being very hard and unvielding.

3. A *low* breaking-strain may be due to looseness and coarseness in the texture, or to extreme softness, although very close and fine in quality.

4. The contraction of area at fracture, previously overlooked, forms an essential element in estimating the quality of specimens.

5. The respective merits of various specimens can be correctly ascertained by comparing the breaking-strain *jointly* with the contraction of area.

6. Inferior qualities show a much greater variation in the breaking-strain than superior.

7. Greater differences exist between small and large bars in coarse than in fine varieties.

8. The prevailing opinion of a rough bar being stronger than a turned one is erroneous.

9. Rolled bars are slightly hardened by being forged down.

10. The breaking-strain and contraction of area of iron plates are greater in the direction in which they are rolled than in a transverse direction.

22. Iron is less liable to snap the more it is worked and rolled.

33. The ratio of ultimate elongation may be greater in short than in long bars in some descriptions of iron, whilst in others the ratio is not affected by difference in the length.

44. Iron, like steel, is softened, and the breaking-strain reduced, by being heated and allowed to cool slowly.

54. A great variation exists in the strength of iron bars which have been cut and welded; whilst some bear almost as much as the uncut bar, the strength of others is reduced fully a third.

55. The welding of steel bars, owing to their being so easily burned by slightly overheating, is a difficult and uncertain operation.

56. Iron is injured by being brought to a white or welding heat, if not at the same time hammered or rolled.

57. The breaking-strain is considerably less when the strain is applied suddenly instead of gradually, though some have imagined that the reverse is the case.

61. The specific gravity is found generally to indicate pretty correctly the quality of specimens.

62. The density of iron is *decreased* by the process of wire-drawing, and by the similar process of cold rolling,* instead of *increased*, as previously imagined.

64. The density of iron is decreased by being drawn out under a tensile strain, instead of increased, as believed by some.

* NOTE.—The conclusion of Mr Kirkaldy in respect to cold rolling is undoubtedly true when the rolling amounts to wire-drawing; but when the compression of the surface by rolling diminishes the sectional area in greater proportion than it extends the bar, the result, according to the experience of the Pittsburgh manufacturers, is a slight increase in the density of the iron.

200. It must be abundantly evident from the facts which have been produced that the breaking-strain when taken alone gives a false impression of, instead of indicating, the real quality of the iron, as the experiments which have been instituted reveal the somewhat startling fact that frequently the inferior kinds of iron actually yield a higher result than the superior. The reason of this difference was shown to be due to the fact, that whilst the one quality retained its original area only very slightly decreased by the strain, the other was reduced to less than one-half. Now surely this variation, hitherto unaccountably completely overlooked, is of importance as indicating the relative hardness or softness of the material, and thus, it is submitted, forms an essential element in considering the safe load that can be practically applied in various structures. It must be borne in mind that although the softness of the material has the effect of lessening the amount of the breaking-strain, it has the very opposite effect as regards the working-strain. This holds good for two reasons: first, the softer the iron the less liable it is to snap; and second, fine or soft iron, being more uniform in quality, can be more *depended upon in practice*. Hence the load which this description of iron can suspend with safety may approach much more nearly the limit of its breaking-strain than can be attempted with the harder or coarser sorts, where a greater margin must necessarily be left.

202. As a necessary corollary to what we have just endeavored to establish, the writer now submits, in addition, that the *working-strain* should be in proportion to the breaking-strain per square inch of *fractured area*, and not to the breaking-strain per square inch of *original area* as heretofore. Some kinds of iron experimented on by the writer will sustain with safety more than double the load that others can suspend, especially in circumstances where the load is unsteady, and the structure exposed to concussions, as in a ship or railway bridge.

KIRKALDY'S RULE FOR COMPARING THE QUALITIES OF IRON:

The breaking-weight per square inch of the fractured area, instead of the breaking-weight or strain per square inch of the original area.

DIMINUTION OF TENACITY OF WROUGHT IRON

At High Temperatures.

EXPERIMENTS FRANKLIN INSTITUTE, 1839.

WALTER JOHNSON AND BENJAMIN REEVES, COM.

С.	Fahr.	Diminution per cent. of Max. Tenacity.	С.	Fahr.	Diminution per cent. cf Max. Tenacity.
271° 299 313 316 332 350 378 389 390 408 410 440	520° 630 732	0.0738 0.0869 0.0964 0.1047 0.1155 0.1436 0.1491 0.1535 0.1589 0.1627 0.2010	500° 508 554 599 624 626 642 669 674 708	932° 1154 1245 1306	0.3324 0.3593 0.4478 0.5514 0.6000 0.6011 0.6352 0.6622 0.6715 0.7001

The contraction of a wrought-iron rod in cooling is about equivalent to $\frac{1}{10000}$ of its length from a decrease of 15° Fahr., and the strain thus induced is about *one ton* for every square inch of sectional area in the bar.

For a rod of the lengths given below the contraction will be as follows :

Contraction and expansion being equal, the pressure per square inch induced by heating or cooling is as follows:

For temperatures varying by 15° Fahr.:

Variation,	15	30	45	бо	75	105	120	150	degrees.
	#100000.000			-		Acres 40-10-17		NAMES OF TAXABLE PARTY.	
Pressure,	I	2	3	4	5	7	8	IO	tons.

Stoney gives 8° C. = 14.4 Fahr. as equivalent to a pressure of one ton per square inch for wrought iron, and 15° C. = 27 Fahr, for cast iron.

LINEAR EXPANSION OF METALS.

Between o° and 100° C. For 1° C. For 1° Fahr.

	~	 Join o dinici add			
Zinc		0.00294			
Lead		0.00284			
Tin		0.00222			
Copper, Yell	ow	0.00188			
Copper, Red		0.00171			
Forged Iron	*	0.00122	.00	000122	.00000677
Steel ⁺			.00	000114	.00000633
Cast Iron*		0.00111	.00	11000	.00000616

For a change of 100° Fahr., a bar of iron 1475' long will extend I foot. Similarly, a bar 100 feet long will extend .0678 foot, or .8136 inch.

According to the experiments of Du Long and Petit, we have the mean expansion of iron, copper, and platinum, between 0° and 100° C., and 0° and 300° C., as below :

					From o° to 100° C.	0° to 300° C.
Iron					0.00180	0.00146
Copper .					0.00171	0.00188
Platinum	•			•	0.00884	0.00918

The law for the expansion of iron, steel, and cast iron at very high temperatures, according to Rinman, is as follows:

From 25° to 525° Red Heat=500°	C. C. For 1° C. 1° Fahr.						
Iron00714	.0000143 = .0000080						
Steel01071	.0000214 = .0000119						
Cast Iron01250	.0000250 = .0000139						
From 25° to 1300° Nascent White=1275	òc.						
Iron01250	.00000981 = .00000545						
Steel01787	.00001400 = .00000777						
Cast Iron02144	.00001680 = .00000933						
From 500° to 1500 Dull Red to White Heat Difference.	°. ≕™° C.						
Iron00535	.00000535 = .0000030						
Steel00714	.00000714 == .0000040						
Cast Iron00893	.00000893 == .0000050						
Ratio of Expansion in Hundred Parts, assuming Forge Iron to Expand between 0° and 100° C.=.00122.							
From 0° to 100°. 25° to 52							
Iron 100 per ct. 117 pe							

* Laplace and Lavoisier.

"

Cast Iron 91

† Ramsden.

73

66

137

66

205

66

DIFFERENT COLORS OF IRON CAUSED BY HEAT. POUILLET. C. FAHR. COLOR. 210°... 410°... Pale Yellow. 221... 430... Dull Yellow. 256... 493... Crimson.

261 370	•••	 502 680 Violet, Purple, and Dull Blue; be- tween 261° C. to 370° C. it passes to Bright Blue, to Sea Green, and then disappears.
500		932 Commences to be covered with a light coating of oxide; loses a good deal of its hardness, becomes much more impressible to the hammer, and can be twisted with ease.

525		977				Becomes Nascent Red.
700		1292				Sombre Red.
800		1472				Nascent Cherry.
900		1657				Cherry.
1000		1832				Bright Cherry.
1100		2012				Dull Orange.
I 200		2192				Bright Orange.
1 300		2372				White.
1400	•	2552				Brilliant White-Welding Heat.
1500		2732)			Dazzling White.
1600		2912	5.	•	·	Daniel Charles

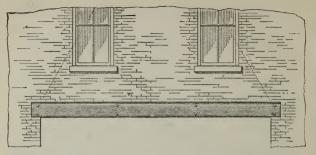
MELTING POINT OF METALS.

NAME.	FAHR.	FAHR.	AUTHORITY.
Platina			
Antimony	955	842	. J. Lowthian Bell.
Bismuth	487	507	. "
Tin (average)	475		
Lead "	622	620	. "
Zinc	772	782	. 66
Cast Iron	2010 {	19222012 . 20122192 .	. White. } Pouillet.
Wrought Iron	2910	2733	. Welding Heat. "
Steel	2370	2550	
Copper (average).	2174		

NOTES ON THE

WEIGHT AND COMPOSITION OF AIR.

1 cubic foot of air at 32° Fahr., under a pressure of 14.7 lbs. per square inch, weighs .080728 lb.


Therefore, 1000 cubic feet = 80.728 lbs.

I cubic foot = 1.292 oz	. {23 per cent. Oxygen. 77 per cent. Nitrogen.
1 cubic foot of air contains	.29716 oz. Oxygen. .99484 oz. Nitrogen. I.29200 total weight.
I cubic foot of air contains	
53.85 cubic feet of air contain .	. { 1.000 lbs. Oxygen. 3.347 lbs. Nitrogen. 4.347 lbs.

Carbonic acid = $C O_2 = 22$. C = 6. O = 8. $O_2 = 16$. 6 + 16 = 22.

For combustion to carbonic acid I lb. of coal requires $2\frac{2}{3}$ lbs. of oxygen, or 143.6 cubic feet of air, supposing all of the oxygen to combine with the coal. 280 to 300 cubic feet of air per pound of coal is the usual allowance for imperfect combustion.

11.59 lbs. of air for perfect combustion.24 lbs. of air for imperfect combustion.

THE above cut illustrates a girder composed of two beams supporting a wall. During the construction a temporary prop should be placed beneath the girder after several courses of brick have been laid, and the prop should not be removed until the masonry is dry. This will prevent undue deflexion of the girder.

The girder should be of sufficient strength to sustain the entire weight of the wall between perpendicular lines above the span to a height corresponding to the apex of the dotted lines.

Assuming the weight of a cubic foot of brick wall to be 112 pounds, a superficial square foot of 9 inch wall will weigh 84 pounds, of 13 inch wall 121 pounds, and of 18 inch wall 168 pounds, and the following table specifies suitable beams for use as girders over the several spans named.

PROPER SIZES OF BEAMS TO USE AS GIRDERS FOR SUPPORTING WALLS.

SPAN.	13" Wall.	SPAN.	13" Wall.
<i>Feet.</i> 8 to 10 10 to 12 12 to 14 14 to 16 16 to 18	26'' 40 lbs. 27'' 55 lbs. 28'' 65 lbs. 29'' 70 lbs. 29'' 84 lbs.	<i>Feet.</i> 18 to 20 20 to 22 22 to 24 24 to 26 26 to 28	2—10 ¹ / ¹ / ₂ 90 lbs. 2—12 ^{1/} 96 lbs. 2—12 ^{1/} 125 lbs. 2—15 ^{1/} 150 lbs. 2—15 ^{1/} 200 lbs.

TABLES

HOF H-

Weights and Measures

WEIGHT OF FLAT BAR IRON.

l, es.					THI	KNESS,	IN IN	CHES.				
Width, in Inches.	1 16	1 8	$\frac{3}{16}$	1 4	5 16	3 8	$\frac{7}{16}$	$\frac{1}{2}$	5 8	3 4	78	1
	lbs.	lbs.	lbs.	lbs.	<i>?bs</i> .	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
I	.21	.42	.63	.84	1.05	1.26	I.47	1.68	2.11	2.53	2.95	3·37
1 <mark>1</mark> /8	.24	•47	.71	.95	1.18	1.42	1.66	1.90	2.37	2.84	3.32	3• 7 9
I¼	.26	.53	•79	1.05	1.32	1.58	1. 84	2.11	2.63	3.16	3.68	4.21
1 ³ ⁄8	.29	. 58	.87	1.16	I.45	I.74	2.03	2,32	2.89	3.47	4.05	4.63
1½	.32	.63	.95	1.26	1.58	1.90	2.21	2.53	3.16	3.79	4.42	5.05
15⁄8	•34	.68	1.03	1.37	1.71	2.05	2.39	2.74	3.42	4.11	4· 7 9	5·4 7
13⁄4	•37	•74	1.11	I.47	ı.84	2.21	2.58	2.95	3.68	4.42	5.16	5.89
17⁄8	.40	•79	1.18	1.58	1.97	2.37	2.76	3.16	3.95	4.74	5.53	6.32
2	.42	.84	1.26	ı.68	2.11	2.53	2.95	3.37	4.21	5.05	5.89	6.74
2 <mark>1</mark> /8	•45	.90	I.34	1.79	2.24	2.68	3.13	3.58	4.47	5.37	6.26	7.16
2¼	· 47	•95	1.42	1.90	2.37	2.84	3.32	3.79	4.74	5.68	6.83	7.58
2 3⁄8	.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00	7.0 0	8.00
2 <mark>1</mark> /2	•53	1.05	1.58	2.11	2.63	3.16	3.68	4.21	5.26	6.32	7 .37	8.42
2 ⁵ /8	.55	1.11	1.66	2.21	2.76	3.32	3.87	4.42	5.53	6.63	7.74	8.84
23/4	. 58	1.16	1.7 4	2.32	2.89	3.47	4.05	4.63	5.79	6.95	8.10	9.26
27/8	.61	1.21	1.82	2 42	3.03	3.63	4.24	4.84	б.05	7.26	8.47	9.63
3	.63	1.26	I.90	2.53	3.16	3.79	4.42	5.05	6.32	7.58	8.84	10.10
3¼	.68	1.37	2.05	2.74	3.42	4.11	4.79	5.47	6.84	8.21	9.58	10.95
3½	·74	1.47	2.21	2.95	3.68	4.42	5.16	5.89	7.37	8.84	10.32	11.79
33/4	•79	1.58	2.37	3.16	3.95	4.74	5.53	6.32	7.89	9.47	11.05	12.63
4	.84	1.68	2.53	3.37	4.21	5.05	5.89	6.74	8.42	10.10	11.79	13.47
4¼	.90	1.79	2,68	3.58	4.47	5.37	6.26	7.16	8.95	10.74	12.53	14.31
4½	.95	1.90	2.84	3 · 7 9	4.74	5.68	6.63	7.58	9.47	11.38	13.26	15.16
43⁄4	1.00	2,00	3.00	4.00	5.00	6.00	7.00	8.00	10.00	12.00	14.00	16.00
5	1.05	2.11	3.16	4.21	5.26	6.32	7·37	8.42	10.53	12.63	14.74	16.84
5¼	1.11	2.21	3.32	4.42	5.53	6.63	7.74	8.84	11.05	13.26	15.47	17.68
5½	1.16	2,32	3.47	4.63	5.79	6.95	8.10	9.26	11.58	13.89	16.21	18.52

WEIGHT OF FLAT BAR IRON.

es.	1				THIC	KNESS,	IN IN	ICHES.				
Width, in Inches.	1 16	1 8	3 16	1 4	5 16	3 8	7 16	$\frac{1}{2}$	5 8	3 4	78	1
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
53/4	1.21	2.42	3.63	4.84	6.05	7.26	8.47	9.68	12.10	14.53	16.95	19.37
6	1.26	2.53	3• 7 9	5.05	6.32	7 .58	8.84	10.10	12.63	15.16	17.68	20.21
61/4	1.31	2.63	3.95	5.27	6.58	7.90	9.21	10.53	13.16	15.79	18.42	22.05
6½	1.36	2.73	4.10	5.47	6.84	8.21	9.58	10.94	13.68	16.42	19.16	21.88
63/4	1.42	2.84	4.26	5.69	7.10	8.53	9.95	11.36	14.21	17.05	19.90	22.73
7	1:47	2.94	4.42	5.90	7.36	8.84	10.32	11 7 9	14. 7 4	17.68	20.64	23.58
7¼	1.53	3.05	4.58	б.11	7.63	9.16	10.68	12.21	15.26	18.32	21.3 7	24.42
7½	1.58	3.16	4.74	6.32	7 .90	9.48	11.06	12.64	15.78	18.94	22.11	25.28
7¾	1.63	3.26	4.90	6.53	8.16	9.7 9	11.42	13.06	16.31	19.57	22.84	26.12
8	1.68	3.36	5.05	6. 7 4	8.42	10.10	11.78	13.48	16.84	20.20	23.58	26.94
81/4	1.74	3.47	5.21	6.95	8.68	10.42	12.16	13.89	17.37	20.84	24.32	2 7.7 9
3 <u>1/</u> 2	1.79	3 58	5.36	7.16	8.94	10.74	12.52	14.32	17.90	21.48	25.06	28.63
83/4	1.84	3.68	5.53	7 ·37	9.21	11.05	12.89	14.74	18.42	22.10	25.79	29.47
9	1.90	3.79	5.68	7.58	9.48	11.36	13.26	15.16	18.95	22 75	26 52	30 32
9¼	1.95	3.90	5.84	7· 7 9	9• 7 4	11.68	13.63	15.58	19 47	23.38	2 7 .26	31.16
9½	2.00	4.00	6.00	8.00	10.00	12 00	14.00	16.00	20,00	24.00	28.00	32.00
9¾	2.05	4.11	6.16	8.21	10.26	12.32	14.37	16.42	20.53	24.63	28. 7 4	32.84
10	2.10	4.21	6.32	8.42	10.52	12.64	14.74	16.84	21.05	25 26	29.48	33.68
10¼	2.16	4.32	6.48	8.63	10. 7 9	12.95	15.11	17.26	21.58	25.89	30.21	34.52
10½	2.21	4.41	6.64	8.84	11.05	13.26	15.48	17.68	22.10	26.52	30.95	35.36
103⁄4	2.26	4.53	6.79	9.05	11.32	13.58	15.84	18.10	22.63	27.16	31.68	36.21
11	2.32	4.64	6.95	9.26	11.58	13.90	16.21	18.52	23.16	27.78	32.42	37.04
11¼	2.37	4.74	7.11	9.47	11.85	14.21	16.58	18.94	23.68	28.42	33.15	37.89
111/2	2.42	4.84	7.26	9.68	12.10	14.52	16.94	19.36	24.20	29.06	33.90	38.74
113/4	2.47	4.94	7.42	9.89	12.37	14.84	17.31	19.78	24.73	29.69	34.63	39.56
12	2.52	5.05	7.58	10.10	12.64	15.16	17.68	20.20	25.26	30.32	35.36	40 .40

WEIGHT OF WROUGHT IRON.

Thickness or Inches.	Diam. in Dec'ls, of a Foot.	Wt. of a Sq. Foot, Lbs.	Wt. per Foot Sq. Bar, Lbs.	Wt. per Foot Round Bar, Lbs
$\frac{1}{32}$.0026	1.263	.0033	.0026
$\frac{\frac{1}{16}}{\frac{3}{32}}$.0052	2.526	.0132	.0104
$\frac{3}{32}$.0078	3 789	.0296	.0233
8	.0104	5.052	.0526	.0414
$\frac{5}{32}$ $\frac{3}{16}$.0130	6.315	.0823	.0646
$\frac{3}{16}$.0156	7.578	.1184	.0930
$\frac{1}{3}\frac{7}{2}$.0182	8.841	.1612	.1266
+	.0208	IO.IO	.2105	.1653
$\frac{9}{32}$.0234	11.37	.2665	.2093
$\frac{5}{16}$.0260	12.63	.3290	.2583
$\frac{1}{3}\frac{1}{2}$.0287	13.89	.3980	.3126
38	.0313	1516	.4736	.3720
$\frac{1}{3}\frac{3}{2}$.0339	16.42	.5558	.4365
$\frac{7}{1.6}$.0365	17.68	.6446	.5063
$\frac{1}{3}\frac{5}{2}$.0391	18.95	.7400	.5813
12	.0417	20.21	.8420	.6613
- <u>9</u> 1.6	.0469	22.73	1.066	.8370
58	.0521	25.26	1.316	1.033
11	.0573	27.79	1.592	1.250
34	.0625	30 31	1.895	1.488
$\frac{13}{16}$.0677	32.84	2.223	1.746
17 8	.0729	35.37	2.579	2.025
$\frac{15}{16}$.0781	37 89	2.960	2.325
I	.0833	40.42	3.368	2.645
$\frac{1}{1.6}$.0885	42.94	• 3.803	2.986
	.0938	45 47	4.263	3.348
8 3 16	.0990	48.00	4.750	3.730
1	.1042	50.52	5.263	4.133
4 -5 -1 -5	.1094	53.05	5.802	4.557
132	.1146	55 57	6.368	5.001
7 16	.1198	58.10	6.960	5.466
10	.1250	60.63	7.578	5.952
15	.1354	65.68	8.893	6.985
H 915 19 19 44-{6	.1458	70.73	10.31	8.101
7	.1563	75.78	11.84	9.300
2	.1667	80.83	13.47	10.58
J	.1771	85.89	15.21	11 95
ĩ	.1875	90 94	17.05	13.39
1000	.1979	95.99	19.00	14.92
0.10	.2083	101.0	21.05	16.53
2.5	.2188	106.1	23.21	18.23
3	.2292	III.2	25.47	20.01
(402)20 (621-2)20 ec]+44 10	.2396	116.2	27.84	21.87
3	.2500	121.3	30.31	23.81

WEIGHT OF WROUGHT IRON.

Thickness or I Inches.	Diam. in Dec'ls, of a Foot.	Wt. of a Sq. Foot, Lbs.	Wt. per Foot Sq. Bar, Lbs.	Wt. per Foot Round Bar, Lbs
318	.2604	126.3	32.89	25.83
310143001710303147-10	.2708	131.4	35.57	27.94
<u>3</u> 8	.2813	136.4	38.37	30.13
$\frac{1}{2}$.2917	141.5	41.26	32.41
15/8	.3021	146.5	44.26	34.76
34	.3125	151.6	47.37	37.20
78	.3229	156.6	50.57	39.72
4	.3333	ıĞı.7	53.89	42.33
	.3438	166.7	57.31	45.01
	.3542	171.8	60.84	47.78
430	.3646	176.8	64.47	50.63
8	.3750	181.9	68.20	53.57
25	.3854	186.9	72.05	56.59
8	.3958	192.0	75.99	59.69
47	.4063	-	75.99 80.05	62.87
8		197.0		
5	.4167	202.I	84.20	66.13
8	.4271	207.1	88.47	69.48
4	·4375	212.2	92.83	72.91
2001	•4479	217.2	97.31	76.43
2	.4583	222.3	101.9	80.02
28	.4688	227.3	106.6	83.70
5 THE NAME AND	.4792	232.4	III.4	87.46
18	.4896	237.5	116.3	91.31
6	.5000	242.5	121.3	95.23
$\frac{1}{4}$.5208	252.6	131.6	103.3
1412234	.5417	262.7	142.3	111.8
$\frac{3}{4}$.5625	272.8	153.5	120.5
	.5833	282.9	165.0	129.6
1	.6042	293.0	177.0	139.0
1	.6250	303.1	189.5	148.8
13/4	.6458	313.2	202.3	158.9
7 141 223 4 8	.6667	323.3	215.6	169.3
1	.6875	333.4	229.3	180.1
1	.7083	343.5	243.4	191.1
141-12403/4	.7292	353.6	247.9	202.5
9	.7500	363.8	272.8	214.3
	.7708	373.9	288.2	226.3
4	.7917	373.9		238.7
141223		• •	304.0	
IO	.8125	394.I	320.2	251.5
	.8333	404.2	336.8	264.5
$\frac{1}{2}$.8750	424.4	371.3	291.6
11	.9167	444.8	407.5	320.1
$\frac{1}{2}$.9583	464.6	445.4	349.8
12	I Foot.	485.	485.	380.9

ø

GENERAL RULES

FOR DETERMINING

THE WEIGHT OF ANY PIECE OF WROUGHT IRON.

One cubic foot of wrought iron = 480 lbs. One square foot, one inch thick . . . = $\frac{480}{12}$ = 40 lbs. One square inch, one foot long . . = $\frac{40}{12}$ = $3\frac{1}{3}$ lbs. One square inch, one yard long . . = $3\frac{1}{3} \times 3$ = 10 lbs.

Hence it appears that the weight of any piece of wrought iron in pounds per yard is equal to 10 times its area in square inches.

Example.—The area of a bar $3'' \times 1'' = 3$ square inches, and its weight is 30 lbs. per yard.

For round iron the weight per foot may be found by taking the diameter in quarter inches, squaring it, and dividing by 6.

Example.—What is the weight of 2'' round iron? 2'' = 8 quarter inches. $8^2 = 64$. $8^4 = 10^2$ lbs. per foot of 2'' round.

Example.—What is the weight of $\frac{3}{4}$ '' round iron ? $\frac{3}{4}$ '' = 3 quarter inches. $3^2 = 9$. $\frac{9}{4} = 1\frac{1}{4}$ lbs. per foot of $\frac{3}{4}$ '' round.

The above rules are highly convenient, and enable mental calculations of weight to be quickly obtained with accuracy.

CAST-IRON PIPE.

WEIGHT OF A LINEAL FOOT.

s E			THIC	KNESS 0	F META	L, IN IN	CHES.		
Bore, in Inches.	1 4	38	12	5 8	34	7 8	1	1^{1}_{8}	$1\frac{1}{4}$
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
2	5.5	8.7	12.3	16.1	20.3	24.7	29.5	34.5	39.9
21/2	6.8	10.6	14.7	19.2	24.0	29.0	34 •4	40.0	46.0
3	7.9	12,4	17.2	22,2	27.6	32.3	39.3	45.6	52.2
$3\frac{1}{2}$	9.2	14.3	19.6	25.3	31.3	37.6	44.2	51.0	.58.3
4	10.4	16.1	22.1	28.4	35.0	41.9	49.1	56.6	64.4
$4\frac{1}{2}$	11.7	18.0	24.5	31.5	3 ⁸ .7	46.2	54.0	62.1	70.6
5	12.9	19.8	27.0	34.5	42.3	50.5	59.9	67.7	76.7
$5\frac{1}{2}$	14.1	21.6	29.5	37.6	46.0	54.8	63.8	73.2	82.9
6	15.3	23.5	31.9	40.7	49 7	59.1	68.7	78.7	89. 0
7	17.8	27.2	36.9	46.8	57.1	67.7	78.5	89.8	101.
8	20.3	30.8	41.7	52.9	64 4	76.2	88.4	101.	114.
9	22.7	34.5	46.6	59.1	71.8	84.8	98.2	112,	126.
10	25.2	38.2	51.5	65.2	79 2	93•4	108.	123.	138.
ΙI	27.6	41.9	56.5	71.3	86.5	102.	118.	134.	150.
12	30.1	45.6	61.4	77.5	93.9	111.	128.	145.	163.
13	32.5	49.2	66.3	83.6	101.	119.	138.	15б.	175.
14	35.0	52.9	71.2	89.7	109.	128.	147.	167.	187.
15	37.4	56.6	7б. 1	95.9	116.	136.	157.	178.	199.
īб	39.1	65.3	81.0	102,	123.	145.	167.	189.	212.
18	44.8	67.7	90.9	114.	138.	162.	187.	211,	236.
20	49 ·7	75.2	101.	127.	153.	179.	206.	233.	261.
22	54.6	82.6	III.	139.	168.	197.	226.	255.	285.
24	59.6	89.9	120.	151.	182.	214.	245.	278.	310.
26	64.5	97.3	131.	164.	198.	231.	266.	300.	335.
28	69.4	105.	140.	176.	212.	249.	286.	323.	360.
30	74.2	112.	150.	188.	227.	266.	305.	345.	384.

Note.-For each joint, add a foot to length of pipe.

GALVANIZED AND BLACK IRON.

Weight in Pounds per Square Foot of Galvanized Sheet Iron, both Flat and Corrugated.

The numbers and thicknesses are those of the iron before it is galvanized. When a flat sheet (the ordinary size of which is from 2 to 21 feet in width, by 6 to 8 feet in length) is converted into a corrugated one, with corrugations 5 inches wide from centre to centre, and about an inch deep (the common sizes), its width is thereby reduced about Toth part, or from 30 to 27 inches; and consequently the weight per square foot of area covered is increased about 1th part. When the corrugated sheets are laid upon a roof, the overlapping of about 21 inches along their sides and of 4 inches along their ends diminishes the covered area about 1th part more; making their weight per square foot of roof about 4th part greater than before. Or the weight of corrugated iron per square foot in place on a roof is about 1/2 greater than that of the flat sheets of above sizes of which it is made.

W. Gauge.		BLA	CK.			GALVA	NIZED.	
W. G8	Fl	at.	Corru	gated.	Fl	at.	Corru	gated.
No. B.	Lbs.	On Roof.	Lbs.	On Roof.	Lbs.	On Roof.	Lbs.	On Roof.
30 29 28 27 26 25 24 23 22 21 20	.48 .52 .56 .64 .72 .80 .88 I.00 I.12 I.28 I.40	.56 .61 .67 .75 .84 .93 1.03 1.17 1.31 1.49 1.63	.53 .58 .62 .71 .80 .89 .89 .89 .81 1.11 1.24 1.43 1.56	.62 .68 .73 .83 .93 1.04 1.14 1.29 1.45 1.67 1.82	.71 .75 .81 .87 .94 1.00 1.06 1.19 1.31 1.50 1.75	.83 .87 .94 1.01 1.09 1.17 1.24 1.39 1.53 1.75 2.03	.79 .83 .90 .97 I.04 I.11 I.18 I.32 I.47 I.67 I.94	.91 .97 1.05 1.13 1.21 1.29 1.37 1.54 1.71 1.95 2.26
19 18 17 16 15 14	1.69 1.96 2.33 2.60 2.89 3.33	1.97 2.29 2.72 3.03 3.37 3.88	1.87 2.18 2.59 2.89 3.21 3.70	2.18 2.54 3.02 3.37 3.74 4 31	1.94 2.37 2.69 3.00 3.30 3.75	2.26 2.76 3.13 3.50 3.85 4.37	2 15 2.63 2 99 3 33 3.67 4.17	2.51 3.07 3.49 3.88 4.28 4.86
13	3.81	4 4 4	4.23	4.93	4.23	4 93	4.70	5.48

NOTE.—The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot.

AMERICAN AND BIRMINGHAM WIRE GAUGES.

No. Gauge.	Thickness American Gauge.	Thickness Birmingham Gauge.	No. Gauge.	Thickness American Gauge.	Thickness Birmingham Gauge.	No. Gauge.	Thickness American Gauge.	Thickness Birmingham Gauge.
	Inch.	Inch.		Inch.	Inch.		Inch.	Inch.
0000	.46	.454	II	.0907	. I 2	25	.0179	.02
000	.4096	.425	12	.0808	.109	26	.0160	.018
00	.3648	.38	13	.0719	.095	27	.0142	.016
0	.3248	.34	14	.0641	.083	28	.0126	.014
I	.2893	.30	15	.057	.072	29	.0II2	.013
2	.2576	.284	16	.0508	.065	30	.0I	.012
3	.2294	.259	17	.0452	.058	31	.0089	10.
4	.2043	.238	18	.0403	.049	32	.0079	.009
5	.1819	.22	19	.0359	.042	33	.007	.008
6	.1620	.203	20	.0319	.035	34	.0063	.007
7	.1443	.18	2 I	.0284	.032	35	.0056	.005
8	.1285	.165	22	.0253	.028	36	.005	.004
9	.1144	.148	23	.0225	.025			
10	.1019	.134	24	.0201	.022			

RAILROAD SPIKES.

Length and Thickness in a Keg of 150 Pounds.

Length.	Thickness.	Number.	Length.	Thickness.	Number.
$4\frac{1}{2}$ $4\frac{1}{2}$ 5 5 5 5 5 5 5 5 5	7, 10 10 10 10 10 10 10 10 10 10 10 10 10 1	527 400 710 489 390 296 258	5 ¹ 21 5 ¹ 21 56 6 6	1.19 10 1.00 - 10 - 10 1.00 - 10 - 10 1.00	356 290 219 311 263 197

SPLICES AND BOLTS FOR ONE MILE OF TRACK.

F

Rails	30	feet long	take	704	splices,	1408	bolts.
66	28	" "	66	754	66	1508	66
66	27	66	"	782	66	1564	66
"	25	6.6	66	844	6.6	1688	"
"	24	66	"	880	4.4	1760	66

RAILROAD IRON.

To find the number of tons of rails for one mile of single track, divide the weight per yard by 7 and multiply by 11. Thus: for 56 lb. rail, 56 + 7 = 8, and $8 \times 11 = 88$ tons per mile.

WEIGHT OF ROLLED LEAD, COPPER, AND BRASS.-SHEET AND BAR.

Thickness	in Inches.		I-32	1-16	3-32	I-8	5-32	3-16	7-32	I-4	5-16	3-8	7-16	I-2	9 I 6	5-8	91-11	3-4_	01-E1	7-8	15-16	Ι.	I-8	I-4	3-8	I-2	5-8	3-4	7-8
	Round Bars I foot long.	Lbs.	.003	110.	.025	.044	690.	.100	.136	.177	.277	.399	.543	6c.L ·	006.	I.II	I.34	1.60	I.87	2.17	2.49	2.84	3.60	4.43	5.37	6.38	7 49	8.68	9.97
BRASS.	Square Bars I I foot long.	Lbs.	.004	.oi4	.032	.056	.088	.127	.173	.226	.353	.508	169.	.903	1.14 I	I.41	I.70	2.03	2.38	2.76	3.18	3.61	4.57	5.64	6 82 2	8.12	9.53	I.II	12.7
	Sheets per Square Foot.	Lbs.	I.36	2.71	4.06	5.42	6.75	8.IS	9.50	IO.8	13.5	16 3	0.61	21.7	24.3	27.1	29.8	32.5	35.2	37.9	40.6	43.3	48.7	54.2	59.6	65.0	70.4	75.9	81.3
	Round Bars I foot long.	Lbs.	.003	.012	.027	.047	.074	.106	.144	.189	.295	.425	.578	.755	.955	1.18	I.43	1.70	1.99	2.31	2.65	3.02	3.82	4.72	5.72	6.80	7.98	9.25	10 6
COPPER.	Square Bars I foot long.	Lbs.	.004	•015	.034	.060	.094	.135	.184	.240	.376	.54I	.736	.962	I.22	I.50	I.82	2.16	2.55	2.94	3.38	3.85	4 87	6.0I	7.28	8.65	IO.2	11.8	13.5
	Sheets per Square Foot.	Lbs.	I.44	2.89	4.33	5.77	7.20	8.66	10.1	11.5	14.4	17.3	20.2	23.1	26.0	28.9	31.7	34.6	37.5	40.4	43.3	46.2	52.0	57.7	63.5	69.3	75.1	80.8	86.6
	Round Bars r foot long.	Lbs.	.004	*0I5	.034	190*	.095	.137	.187	.244	.381	.548	.746	.974	I.23	I.52	I.84	2.19	2.57	2.98	3.42	3.90	4.92	6.09	7.37	8.77	IO.3	6.11	13.7
LEAD.	Square Bars 1 I foot long.	Lbs.	.005	010.	.044	.078	.121	.174	.237	.310	.485	869.	.950	I.24	I.57	1.94	2.34	2.79	3.27	3.80	4.37	4.96	6.27	7.75	9.37	11.2	13.I	15.2	17.5
	Sheets per Square Foot.	Lbs.	I.86	3.72	5.58	7.44	9.30	11.2	13.0	14.9	18.6	22.3	26.0	29.8	33.5	37.2	40.9	44.6	48.3	52.1	56.0	59.5	6.99	74.4	81.8	89.3	96.7	I04.	112.
Thickness	or Diameter, in Inches.		I-32	1-16	3-32	-00-I	5-32	3-16	7-32	I-4	5-16	3-8	7-16	I-2	91-6	5-8	01-11	3-4	13-16	7-8	15-16	Ι.	I-8	I-4	3-8	I-2	5-8	3-4	7-8

THE PHOENIX IRON COMPANY,

WIRE.

IRON, STEEL, COPPER, BRASS. Weight of 100 Feet in Pounds. Birmingham Wire Gauge.

No. of	PER LINEAL FOOT.											
Gauge.	Iron.	Steel.	Copper.	Brass.								
0000	54.62	55.13	62.39	58.93								
000	47.86	48.32	54.67	51.64								
00	38.27	38.63	43.71	41.28								
0	30.63	30.92	34.99	33.05								
I	23.85	24.07	27.24	25.73								
2	21.37	21.57	24.4I	23.06								
3	17.78	17.94	20.3	19.18								
4	15.01	15.15	17.15	16.19								
5	12.82	12.95	14.65	13.84								
6	10.92	II.02	12.47	11.78								
78	8.586	8.667	9.807	9.263								
8	7.214	7.283	8.241	7.783								
9	5.805	5.859	6.63	6.262								
IO	4.758	4.803	5.435	5.133								
II	3.816	3.852	4.359	4.117								
I 2	3.148	3.178	3.596	3.397								
13	2.392	2.414	2.732	2.58								
14	1.826	1.843	2.085	1.969								
15	1.374	1.387	1.569	1.482								
16	1.119	1.13	1.279	1.208								
17	.8915	.9	1.018	.9618,								
18	.6363	.6423	.7268	.6864								
19	.4675	.472	.534	.5043								
20	.3246	.3277	.3709	.3502								
21	.2714	.274	.31	.2929								
22	.2079	.2098	.2373	.2241								
23	.1656	.1672	.1892	.1788								
24	.1283	.1295	.1465	.1384								
25	.106	.107	.1211	.1144								
26	.0859	.0867	.0981	.0926								
27	.0678	.0685	.0775	.0732								
28	.0519	.0524	.0593	.056								
29	.0448	.0452	.0511	.0483								
30	.0382	.0385	.0436	.0412								
31	.0265	.0267	.0303	.0286								
32	.0215	.0217	.0245	.0231								
33	.017	.0171	.0194	.0183								
34	.013	.0131	.0148	.014								
35	.0066	.0067	.0076	.0071								
36	.0042	.0043	.0048	.0046								

IRON RIVETS.

WEIGHT IN POUNDS PER 100.

Length Under	DIAMETERS, INCHES.									
Head, Inches.	$\frac{1}{4}$	38	$\frac{1}{2}$	53	34	78	I			
I 18 14 เวชาร์นประชาชาร์ช 18 14 เวชาร์ชาร์ชาว์ชาว์ชาร์ชาร์ชาร์ชาร์ชาร์ชาร์ชาร์ชาร์ชาร์ชาร	<i>Lbs.</i> 1.895 2.067 2.238 2.410 2.582 2.754 2.926 3.098 3.269 3.269 3.441 3.613 3.785 3.957 4.129 4.301 4.473 4.644 4.816 4.988 5.160 5.332 5.504 5.676 5.848 6.019 6.191 6.363	<i>Lbs.</i> 4.848 5.616 6.003 6.402 6.789 7.956 7.956 8.343 8.733 9.120 9.511 9.898 10.29 10.67 11.06 11.44 11.84 12.23 12.62 13.01 13.39 13.78 14.17 14.55	Lós. .966 10.34 11.04 11.73 13.12 13.81 14.50 15.19 15.88 16.57 17.26 17.95 18.64 19.33 20.02 20.71 21.40 22.78 23.48 23.48 23.48 23.48 24.17 24.86 25.55 26.24 26.93 27.62	Lós. 16.79 17.86 18.96 20.03 21.04 22.11 23.21 24.28 25.48 25.48 25.65 27.65 28.73 29.82 30.90 31.99 33.08 34.18 35.27 36.35 37.44 38.52 39.60 40.69 41.78 42.87 43.94 45.01	$L\delta s.$ 26.49 27.99 29.61 31.13 32.74 34.25 35.86 37.37 38.99 40.40 42.11 43.67 45.24 46.80 48.36 48.36 49.92 51.49 53.05 54.61 56.17 57.74 59.30 60.86 62.42 63.99 65.55 67.11	<i>Lbs.</i> 39.3 41.4 43.5 45.6 47.8 49.9 52.0 54.1 56.3 58.4 60.5 62.6 64.8 66.9 69.0 71.1 73.3 75.4 77.5 79.6 81.8 83.9 86.0 88.1 90.3 92.4 94.5	<i>Lbs.</i> 55.2 57.9 60.7 63.4 66.2 68.9 71.7 74.4 77.2 79.9 82.7 85.4 88.2 90.9 93.7 96.4 99.2 101.9 104.7 107.4 110.2 112.9 116.7 119.4 121.2 123.9			
IOO Heads.	.519	1.74	4.14	8.10	13.99	22.27	33.15			

Length of rivet required to make one head $= I\frac{1}{2}$ diameters of round bar.

NAILS AND SPIKES.

Size, Length, and Number to the Pound.

CUMBERLAND NAIL AND IRON CO.

ORDINARY.			CLI	NCH.	FINISHING.			
Size.	Length.	No. to Lb.	Longth.	No. to Lb.	Size.	Length.	No. to Lb.	
2 ^d 3 fine 3 4 5 6	$ \frac{7}{8} I \frac{1}{16} I \frac{1}{16} I \frac{1}{16} I \frac{3}{8} I \frac{3}{4} I \frac{3}{4} 2 $	716 588 448 336 216 166	$ \begin{array}{c} $	152 133 92 72 60 43	4 ^d 5 6 8 10 12	$ \begin{array}{c} $	384 256 204 102 80 65	
	21	118			20	$3\frac{5}{8}$ $3\frac{7}{8}$	46	
7 8 10	$2\frac{1}{2} \\ 2\frac{3}{4}$	94 72	FENCE.			CORE.		
12 20 30 40 50 60	$\begin{array}{c} -4\\ 3\frac{8}{8}\\ 3\frac{4}{4}\\ 4\frac{3}{4}\\ 4\frac{3}{4}\\ 5\\ 5\frac{1}{2} \end{array}$	50 32 20 17 14 10	$ \begin{array}{c} 2\\ 2\frac{1}{4}\\ 2\frac{1}{2}\\ 2\frac{3}{4}\\ 3\\ \end{array} $ SPI	96 66 56 50 40	6 ^d 8 10 12 20 30	$ \begin{array}{c} $	143 68 60 42 25 18	
LIGHT.			"	1	30 40	$4\frac{4}{4}$	13	
4 ^d 5 6	$ I \frac{3}{8} \\ I \frac{3}{4} \\ 2 $	373 272 196	$ \begin{array}{r} 3^{\frac{1}{2}} \\ 4 \\ 4^{\frac{1}{2}} \\ 5 \\ 5^{\frac{1}{2}} \\ 6 \end{array} $	19 15 13 10	W H W H L	$2\frac{1}{2}$	69 72	
			$5\frac{1}{2}$	9 7		SLATE.		
BRADS.			6	7	ad	л 5	288	
6 ^d 8 10 12	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 3 \\ 8 \end{array} $	162 96 74 50	B0 // I ¹ / ₂	AT. 206	3 ^d 4 5 6	$ I \frac{5}{16} \\ I \frac{7}{16} \\ I \frac{3}{4} \\ 2 $	288 244 187 146	

TACKS.

Size.	Length.	Number to Pound.	Size.	Length.	Number to Pound.	Size.	Length.	Number to Pound.
I OZ.	18	16000	4 oz.	$\frac{7}{16}$	4000	I4 oz.	$\frac{1}{1}\frac{3}{6}$	1143
$I\frac{1}{2}$	$\frac{3}{16}$	10066	6	9 T &	2666	16	$\frac{7}{8}$	1000
2	1	8000	8	9 10 58	2000	18	$\frac{15}{16}$	888
$2\frac{1}{2}$	5	6400	10	$\frac{11}{16}$	1600	20	I	800
3	16 3. 3.	5333	I 2	$\frac{\frac{11}{16}}{\frac{3}{4}}$	1333	22	$I\frac{1}{16}$	727

UNITED STATES STANDARD SIZES SQUARE AND HEXAGON NUTS.

Number of each size in 100 Lbs.

Size of Bolt.	SIZE OF NUT.		SQU	ARE.	HEXAGON.		
	Width.	Thick- ness.	No. in 100 Lbs.	Weight each in Lbs.	No. in 100 Lbs.	Weight each in Lbs.	
1/4	$\frac{1}{2}$	- 1 4	7400	.013	8880	I IO.	
$\frac{5}{16}$	$\frac{1}{3}\frac{9}{2}$	$\frac{5}{16}$	4000	.025	4800	.020	
38	$\frac{11}{16}$	<u>3</u> 8	2730	.036	3276	.030	
716	$\frac{25}{32}$	$\frac{7}{16}$	1700	.058	2040	.050	
$\frac{1}{2}$	78	$\frac{1}{2}$	1160	.086	1392	.071	
9 16	$\frac{31}{32}$	9 16	900	.111	1080	.092	
	$I\frac{1}{16}$		653	.153	784	.127	
<u>58</u> 3478	I 1/4	50 SH 70	386	.259	463	.215	
$\frac{7}{8}$	I 7 16	$\frac{7}{8}$	260	.384	312	.320	
I	I <u>5</u>	I	170	.588	204	.490	
I 1/8	$I\frac{13}{16}$	I 1/8	I 22	.819	146	.684	
I14	2	11	90	I.III	108	.925	
I <u>3</u>	$2\frac{3}{16}$	I <u>3</u>	69	I.44	83	I.20	
I 1/2	$2\frac{3}{8}$	I 1/2	54	1.85	65	1.53	
I <u>5</u>	$2\frac{9}{16}$	I <u>5</u>	43	2.32	52	1.92	
$1\frac{3}{4}$	$2\frac{3}{4}$	$I\frac{3}{4}$	35	2.85	42	2.38	
$I\frac{7}{8}$	$2\frac{15}{16}$	I 7 /8	29	3 44	35	2.85	
2	$3\frac{1}{8}$	2	24	4.16	30	3.33	
$2\frac{1}{8}$	315	$2\frac{1}{8}$	20	5.00	26	3.84	
$2\frac{1}{4}$	31/2	$2\frac{1}{4}$	17	5.88	22	4.54	
$2\frac{3}{8}$	$3\frac{1}{16}$	$2\frac{3}{8}$	14	7.14	19	5.26	
$2\frac{1}{2}$	378	$2\frac{1}{2}$	I 2	8.33	16	6.25	
$2\frac{3}{4}$	$4\frac{1}{4}$	$2\frac{3}{4}$	IO	10.00	13	7.69	
3	$4\frac{5}{8}$	3	8	12.50	10	10.00	

BLANK NUTS-NOT TAPPED.

BOLTS.

WITH SQUARE HEADS AND NUTS.

Weight of 100 of the Enumerated Sizes.

Lengths.	1⁄4 in.	3% in.	$\frac{1}{2}$ in.	⁵⁄8 in.	$\frac{3}{4}$ in.	⅓in.	ı in.	1½ in.
Inch.						Contract of the strength of th		
	4.16	10.62	23.87	39.31				
1 ¹ /2 1 ³ /4	4.22	11.72	25.06	41.38				
2	4.75	12.38	26.44	45.69	73.62		1	
21/4	5.34	12 90	28 62	49.50	76.			
21/2	5.97	14.69	29.50	51.25	79.75			
$2^{1/2}_{2^{3/4}}$	6.50	16.47	31.16	53.	83.]		
3		17.87	32.44	56.	85.38	127.25		
$3\frac{1}{2}$		18.94	39.75	63 12	93.44	140.56		
4		20 59	42.50	74.87	108.12	148.37	228.	296.
$4^{1/2}$		21.69	44.87	79.02	113 12	158.76	239.	310.
5		23.62	48.81	83.	122.	167.25	250.	324.
$5\frac{1}{2}$		25 81	51.38	87.88	128.62	174.88	261.	338.
6		26 87	53.31	92.38	131.75	204.25	272.	352.
6^{1}_{2}			56.87	96.88	139.56	214.69	283.	366.
7 71⁄2			59.12	99 87	145.50	228.44	294.	370.
$7\frac{1}{2}$			61.87	105.75	150.88	235 31	305.	384.
8		•••••	64 44	109.50	157.12	239.88	316.	398.
9			70.50	118.12	169.62	258.12	338.	426.
IO	•••••		77.	128 13	184.	276.18	360.	454.
II		•••••	82.88	136.19	195.13	295.69	382.	482.
12	•••••	•••••	86.37	144.87	209.75	311.94	404	510.
13		•••••	92.	155.50	219.37	335 81	426.	538.
14		•••••	97.75	163 58	237.50	351.88	448.	566.
15		••••	103.25	170.75	249.06	391.75	470.	594.

STANDARD SIZES OF WASHERS.

Thickness Diameter. Size of Hole. Size of Bolt. Number in 100 Lbs. Wire Gauge. Inch. Inch. No. Inch. 5 13 8 7 16 16 50034 14 29300 15,16 1-3/20-1/21 9/10 1-10/203/41-10 16 18000 7600 I 14 12 3300 9 6 1 63 61 2 II $I\frac{1}{2}I\frac{1}{2}I\frac{1}{2}$ 2180 ΤI II 2350 $I\frac{\tilde{3}}{4}$ II 1680 2 τo 1140 8 23 IÅ 580 $2\frac{\tilde{3}}{4}$ IÅ 8 Ił 470 3 138 7 360 Ił 6 360 $I\frac{1}{2}$ 3 13

Number in 100 Pounds.

WROUGHT-IRON WELDED TUBES, FOR STEAM, GAS, OR WATER.

1/4 inch and below, Butt Welded; proved to 300 lbs. per square inch, Hydraulic Pressure. 1/6 inch and above, Lap Welded; proved to 500 lbs. per square inch, Hydraulic Pressure.

0.0		5)
1	Ż	3
	TACKER	VERY TOTAL T
	MODDIC	'n CIVIVIO III
	CITEC	ULLEU.
	C C C L L L L L L L L L L L L L L L L L	UNAUNAI O
	F	Ď
	TT L L L L	LABLE

				_				-			-	-						-		-	-	
	No.ofThreads per Inch of Screw.		27	18	IS	14	14,	11/2	11/2	1112	11/2	×0 (xo (× 0	× 0	xo (× 0	× 0	× «	× 0	xo c	0
	Weight per Foot of Length.	Lbs.	.243	.422	.501	.845	I.126	I.670	2.258	2.694	3.667	5.773	7.547	9.055	10.728	12.492	14.564	18.707	23.410	28.348	34.077	40.041
	Length of Pipe containing 1 Cubic Foot.	Feet.	2500.	1385.	751.5	472.4	270.	166 g	96.25	70.65	42.30	30.11	19.49	14.50	11.31	9.03	7.20	4.98	3 72	2.88	2.20	1.80
	External Area.	Inches.	.129	.229	.358	.554	.866	1.357	3.164	2.835	4.430	6 49 I	9.621	12.500	15.904	19.635	24.299	34 47 ¹	45.663	58.420	73.715	90.702
	Internal Area.	Inches.	.0572	.1041	01910	.3048	.5333	.8627	1 496	2.038	3.355	4.783	7.388	9.887	12.730	I5.939	066.61	28.889	38.737	50.039	63.633	78.838
WINDIT GINNOW	Length of Pipe per Foot, Outside Surface	Feet.	9.44	7.075	5.657	4.502	3.637	2.903	2.301	2.01	1.611	I.328	1.091	.955	.849	.765	.629	.577	.505	.444	•394	.355
D 316450.	Length of Pipe per Foot, Inside Surface.	Feet.	14.15	10.50	7.67	6.13	4.635	3 679	2.768	2.371	I.848	I 547	I.245	1.077	.949	.848	.757	.63	.544	.478	.425	*38T
OF TANADA UNITARY	External Circum- ference.	Inches.	1.272	1.696	2.121	2.652	3.299	4.134	5.215	5.969	7.461	9.032	11 996	12.566	14.137	15.708	17.475	20.813	23.954	27.096	30.433	33.772
	Internal Circum- ference.	Inches.	.848	1.144	I.552	1.957	2.589	3.202	4.335	5.061	6.494	7.754	9.636	II.146	12.648	14.153	15.849	10.054	22.063	25.076	28.277	31.475
TADLE	Thick- ness.	Inches.	.068	.088	100.	.100	, II 3	.134	140	.145	.154	.204	.217	.226	.237	.247	.259	.280	102.	.322	.344	.366
	Actual Outside Diameter.	Inches	405	.54	.675	.84	1.05	1.215	1.66	0.1	2.375	2 875	3.5	. 4	. 4 ۲		5.563	6.625	7.625	8.625	9.688	10.75
	Actual Inside Diameter.	Inches	.270	.364	404	.623	.824	1.048	1.380	1.611	2.067	2.468	3.067	3.548	4.026	4.508	5.045	6.c65	7.023	7 982	0.001	10.019
	Inside Diameter.	Inches	1%	2/3	3,4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3/2	1	11/2	11/2	, ci	21%	i cr	31%	4 6	41%	4 A	9	7	.00	6	IO

THE PHŒNIX IRON COMPANY,

LAP WELDED

AMERICAN CHARCOAL IRON BOILER TUBES.

External Diameter.	Internal Diameter.	Thickness.	External Circumference.	Internal Circumference.	Length Pipe per Ft., Inside Surface.	Length Pipe per 🗆 Ft., Outside Surface.	Internal Area.	External Area.	Weight per Foot.
In.	In.	In.	In.	In.	Ft.	Fl.	In.	In.	Lbs.
I	0.856	0.072	3.142	2.689	4.460	3.819	0.575	0.785	0.708
11/4	1.106	0.072	3.927	3.474	3.455	3.056	0.960	1.227	0.9
$1\frac{1}{2}$ $1\frac{3}{4}$	1.334	0.083	4.712	4.191	2.863	2.547	1.396	1.767	1.250
134	1.560	0.095	5.498	4.901	2.448	2.183	1.911	2.405	1.665
2	τ.804	0.098	6.283	5.667	2.118	1.909	2.556	3.142	1 981
21/4	2.054	0 098	7.069	6.484	1.850	1.698	3.314	3.976	2.238
21/2	2.283	0.109	7.854	7.172	1.673	1.528	4.094	4.909	2.755
23/4	2.533	0.109	8.639	7.957	1.508	1.390	5.039	5.940	3.045
3	2.783	0.109	9.425	8.743	1.373	1.273	6.083	7.069	3.333
$3^{1}/4$ $3^{1}/2$	3.012	0.119	10.210	9.462	1.268	1.175	7.125	8.296	3.958
3 2	3.262	0.119	10.995	10.248	1.171	1.091	8.357	9.621	4.272
33/4	3 512	0.119	11.781	11.033	1.088	1.018	9.687	11.045	4 590
4	3.74 t	0.130	12.566	11.753	1.023	0.955	10.992	12.566	5.320
$4\frac{1}{2}$	4.241	0.130	14.137	13.323	0.901	0.849	14.126	15.904	6.010
56	4.72	0.140	15.708		0.809	0.764	17.497	19.635	7.226
	5.699	0.151	18.849		0 670	0.637	25.509	28.274	9.340
78	6.657	0.172	21.991		0.574	0.545	34.805	38.484	12 435
	7.636	0.182	25.132	23.989	0.500	0.478	45.795		15.109
9	8.615	0.193	28.274		0.444	0.424	58.291	63.617	18.002
10	9.573	0.214	31.416	30.074	0.399	0.382	71.975	78.540	22 19

Tables of Standard Sizes.

WROUGHT-IRON WELDED TUBES.

Extra Strong.

llominal Diameter.	Actual Outside Diameter.	Thickness, Extra Strong	Thickness, Double Extra Strong.	Actual Inside Diameter, Extra Strong.	Actual Inside Diameter, Double Extra Strong.
1/8	.405	,100		.205	
	•54	.123		.294	
3/8	.675	.127		.421	
74 3/8 1/2 3/4	.84	.149	.298	.542	.244
$\frac{3}{4}$	1.05	.157	.314	.736	.422
I	1.315	.182	.364	.951	.587
$\frac{1\frac{1}{4}}{1\frac{1}{2}}$	1.66	. 194	.388	1.272	.884
$I^{1/2}$	1.9	.203	.406	I.494	1.088
2	2.375	.221	.442	1.933	1.491
$2\frac{1}{2}$	2.875	.280	.560	2.315	1.755
3	3.5	.304	.608	2.892	2.284
$3\frac{1}{2}$	4.	.321	.642	3.358	2.716
4	4.5	.341	.682	3.818	3.136

WINDOW GLASS.

Number of Lights per Box of 50 Feet.

Inches.	No.	Inches.	No.	Inches.	No.	Inches.	No
6 × 8	150	12×18	33	16×44 18×20	10	26×32	9
7×9 8×10	115 90	20 22	30	18 X 20 22	20 18	34 36	8
11	82	24	25	24	17	40	7
12	75	26	23	26	15	42	17
13 14	70 64	28	21	28 30	14	44 48	6
14	60	30 32	18	30	13 13	50	6
16	55	34	τ7	34	12	54	5
9×11 12	72 67	13×14 16	40	36 38	II	58	5
12	62	10	35 31	- 40	II IO	28×30 32	9.8
14	57	20	28	44	9 16	24	8
15	53	22	25	20 × 22		36	7
16 17	50 47	24 26	23 21	24 26	15 14	· 38 40	7
18	44	28	19	28	13	44	6
20	40	30	18	30	12	46	6
10×12 13	60 55	14×16 18	32 29	32 34	II	50 52	5 0 0
13	52	20	26	36	10	56	4
15	48	22	23	38	9	30×36	10
16	45	24 26	22	40	9	40 42	
17 18	42	20	18	44 46	8	42	
20	36	30	17	48	8	46	5
22	33	32	16	50 60	76	48	(n tn
24 26	30 28	34 36	15 14	22 × 24	14	50 54	4
28	26	40	13	26	13	56	4
30	24	15×18^{44}	II	28	12 11	60	4
32 34	22 21	15×18 20	27	30 32	10	3 ² × 4 ² 44	(a (a (a (a
11×13	50	22	22	34	10	46	
14	47	24	20	36	9	48	1 5
15 16	44 41	26 28	18 17	38 40 •	9	50 54	4
17	39	30	16	44	8	56	. 4
18	36	32	15	46	7	60	4
20 22	33 30	16×18 20	25 23	24 × 28	7	34×40 44	to to to
24	27	22	20	30	10	46	
26	25	24	19	32	9	50	4
28 30	23 21	26 28	17 16	36 40	8	52 56	4
30	20	30	15	40	7	36×44	5
34	19	32	14	46	76	50	4
12×14 15	43	34 36	13	48 50	6	56	4
15	40 38	30	12	54	5	64	3
17	35	40	II	56	5	40×60	1 3

SKYLIGHT AND FLOOR GLASS.

Weight per Cubic Foot, 186 Pounds.

WEIGHT PER SQUARE FOOT.									
Thickness.	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	<u>3</u> 8	$\frac{1}{2}$	<u>5</u> 8	<u>3</u> 4	I inch.	
Weight	1.62	2.43	3.25	4.88	6.50	8.13	9.75	13 lbs.	

FLAGGING.

Weight per Cubic Foot, 168 Pounds.

WEIGHT PER SQUARE FOOT.									
Thickness.	I	2	3	4	5	6	7	8 inch.	
Weight	14	28	42	56	70	84	98	112 lbs.	

CAPACITY OF CISTERN.

In Gallons, for each Foot in Depth.

Diameter, in Feet.	Gallons.	Diameter, in Feet.	Gallons.
2.	23.5	9.	475.87
2.5	36.7	9.5	553.67
3.	52.9	IO.	587.5
3.5	71.96	II.	710.9
4.	94.02	I2.	846.4
4.5	119.	I 3.	992.9
5.	146.8	I4.	1151.5
5.5	177.7	15.	1321.9
× 6.	211.6	20.	2350.0
6.5	248.22	25.	3570.7
7.	287.84	30.	5287.7
7.5	330.48	35.	7189.
8.	376.	40.	9367.2
8.5	424.44	45.	11893.2

The American standard gallon contains 231 cubic inches, or $8\frac{1}{3}$ pounds of pure water. A cubic foot contains 62.3pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by .433. Each 27.72 inches of depth gives a pressure of one pound to the square inch.

ROOFING SLATE.

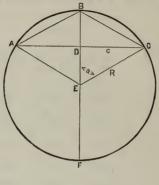
General Rule for the Computation of Slate.

From the length of the slate take three inches, or as many as the third covers the first; divide the remainder by 2, and multiply the quotient by the width of the slate, and the product will be the number of square inches in a single slate. Divide the number of square inches thus procured by 144, the number of square inches in a square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 square feet, when laid upon the roof.

Weight per Cubic Foot, 174 Pounds.

WEIGHT PER SQUARE FOOT.									
Thickness. Weight	18	$\frac{3}{16}$	$\frac{1}{4}$	<u>8</u>	$\frac{1}{2}$	<u>5</u> 8	$\frac{3}{4}$	I inch.	
Weight	1.81	2.71	3.62	5.43	7.25	9.06	10.87	14.5 lbs.	

TABLE OF SIZES AND NUMBER OF SLATE


In One Square.

Size,	No. of Slate	Size,	No. of Slate	Size,	No. of Slate
in Inches.	in Square.	in Inches.	in Square.	in Inches.	in Square.
$\begin{array}{c} 6 \times 12 \\ 7 & 12 \\ 8 & 12 \\ 9 & 12 \\ 10 & 12 \\ 12 & 12 \\ 12 & 12 \\ 7 & 14 \\ 8 & 14 \\ 9 & 14 \\ 10 & 14 \\ 12 & 14 \end{array}$	533 457 400 355 320 266 374 327 291 261 218	$\begin{array}{c} 8 \times 16 \\ 9 & 16 \\ 10 & 16 \\ 12 & 16 \\ 9 & 18 \\ 10 & 18 \\ 11 & 18 \\ 12 & 18 \\ 12 & 18 \\ 14 & 18 \\ 10 & 20 \\ 11 & 20 \end{array}$	277 246 221 184 213 192 174 160 137 169 154	$\begin{array}{c} 12 \times 20 \\ 14 & 20 \\ 11 & 22 \\ 12 & 22 \\ 14 & 22 \\ 12 & 24 \\ 14 & 24 \\ 16 & 24 \\ 16 & 26 \\ 14 & 26 \\ 16 & 26 \end{array}$	141 121 137 126 108 114 98 86 89 78

SPECIFIC GRAVITY AND WEIGHTS OF VARIOUS SUBSTANCES.

		WEIGHTS.		Specific
Name of Substance.	Per Cubic Foot.	Per □ Foot, 1 In. Thick.	Per Cubic Inch.	Gravity.
Water, Pure	62.3	5.19	.036	I.000
Water, Sea	64.3	5.36	.037	1.028
Wrought Iron	480	40.00	.277	7.70
Cast Iron	450	37.50	.260	7.20
Steel	490	40.84	.283	7.84
Lead	710	59.16	.410	11.36
Copper, Rolled	548	45.66	.317	8.80
Brass, Rolled	524	43.66	.302	8.40
Sand	98	8.23	.057	1.57
Clay	I 20	10.00	.069	1.92
Brickwork, Common	I 20	10.00	.069	1.92
" Close Joints	140	11.66	.081	2.24
Limestone	168	18.00	.124	2.68
Glass	156	13.00	.090	2.49
Pine, White	30	2.50	.017	.48
Pine, Yellow	35	2.91	.019	.56
Hemlock	25	2.08	.015	.40
Maple	49	4.08	.028	.78
Oak, White	50	4.16	.030	.80
Walnut	41	3.41	.023	.65

PROPERTIES OF CIRCLES.

B D = h = R (I-cos. a) Sin. $a = \frac{\frac{1}{2}c}{R}$

(1.) Given, chord A D C and vers. sine or rise B D, to find radius,

$$\frac{A D C}{2} = A D \text{ or } D C \therefore \frac{A D^2 + B D^2}{2 B D} = B E$$
$$R = \frac{c^2 + 4 h^2}{8 h}$$

(2.) Given, chord A D C and radius B E, to find rise B D,

$$B = -\sqrt{B} = A D^{2} = B D$$
$$h = R - \sqrt{R^{2} - \frac{c^{2}}{4}}$$

(3.) Given, the radius and rise, to find the chord A D C,

 $A D = \sqrt{B E^2 - (B E - B D)^2}$

Chord A D C = 2 A D = $2\sqrt{B E^2 - (B E - B D)^2}$

 $c = 2 \sqrt{2 h R - h^2}$

(4.) Given, the chord of an arc and the chord of half the arc, to find the length of the arc,

$$\frac{8 \text{ A B} - \text{A D C}}{3} = \text{arc A B C (very nearly)}.$$

(5.) To find the number of degrees in the arc of a circle, when the diameter, or radius, and the length of the arc are given,

 $\frac{\text{Arc A B C}}{\pi \times \text{diameter}} \times 360^{\circ} = \text{degrees in arc A B C}$

(6.) Length of an arc of one degree = $R \times .0174533$ Length of an arc of one minute = $R \times .0002909$ Length of an arc of one second = $R \times .0000048$

Example.—Let radius = 100 feet, and the angle of the arc be 90° . What is the length of the arc?

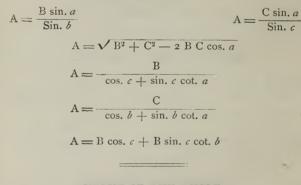
$$100 \times .0174533 \times 90^{\circ} = 157.08$$
 feet.

MENSURATION OF SURFACES.

Area of circle	= Diameter ²	imes .7854
Area of ellipse	= Transv. axis	\times conjug. axis \times .7854
Area of sector of circle	e = Arc	$\times \frac{1}{2}$ radius
Area of parabola	= Base	$ imes rac{2}{3}$ height
Surface of sphere	= Diameter ²	imes 3.1416

MENSURATION OF SOLIDS.

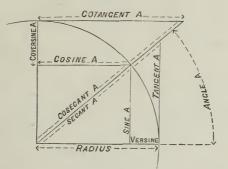
Cylinder	= Area of one end $ imes$ length
Sphere	$=$ Diameter ³ \times .5236
Cone, or pyramid	= Area of base $\times \frac{1}{3}$ height
Any prismoid	= Sum of areas of the two parallel sur-
	faces $+$ 4 times the area of a mid-
	way section $ imes$ length, and the total
	product divided by 6.


PROPERTIES OF TRIANGLES.

In right-angled triangles

 $\begin{array}{l} hypoth.^2 = base^2 + perpend.^2\\ base^2 = (hyp. + perp.) \times (hyp.-perp.)\\ perp.^2 = (hyp. + base) \times (hyp.-base) \end{array}$

VALUE OF ANY SIDE A.

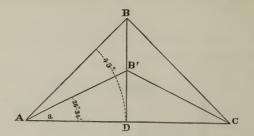


VALUE OF ANY ANGLE.

Sin. $b = \frac{B \sin a}{A}$ Cos. $b = \frac{A^2 + C^2 - B^2}{2 A C}$ Sin. $b = \sin (c + a)$. Sin. $b = \sin c \cos a + \cos c \sin a$.

TRIGONOMETRICAL EXPRESSIONS.

The diagram shows the different trigonometrical expressions in terms of the angle A.



Complement of an angle = its difference from 90°. Supplement . . . = its difference from 180°.

TRIGONOMETRICAL EQUIVALENTS.

$\sqrt{(I-Sin^2)}$	= Cosin.	$\sqrt{(I-Cosin^2)}$	- Sine.
$Sin \div Tan$	= Cosin.	$Cosin \div Cotan$	= Sine.
Sin $ imes$ Cotan	= Cosin.	1 ÷ Cotan	= Tangent.
Sine \div Cos	= Tangent.	$I \div Sin$	= Cosecant.
$\cos \div Sine$	= Cotang.	$I \div Cosin$	= Secant.
$Sin^2 + Cos^2$	= Rad ² .	$I \div Cosecant$	= Sine.
$Rad^2 + Tan^2$	= Secant ² .	1 ÷ Secant	= Cosin.
I -÷ Tan	= Cotang.	Rad-Cosin	= Versin.
		RadSin	= Coversin.

USE OF TABLE OF NATURAL SINES, ETC.

Example 1. To find the angle a, when A D and B' D are given, from table of natural sines and tangents, p. 153.

A D being radius, B' D = tan a. Let $\begin{cases} A D = 20, \\ B' D = 10. \end{cases}$

Then
$$\frac{B' D}{A D} = \frac{10}{20} = .50000.$$

Referring to table we find for

26°,	the	natural	tan	ger	ıt	to	b	е	.48773
27°,	the	natural	tan	ger	ıt	to	b	e	.50952
	Dif	ference		•	•			•	.02179

The angle, therefore, is more than 26 and less than 27 degrees. If greater accuracy is required, take the difference between natural tangent of 26° and 27° as above, viz., .02179, and divide by 60, which will give .00036 for one minute. Now subtract from .50000 the natural tangent for 26° , viz., .48773, leaving .01227, and divide the difference by .00036; the quotient will be 34 minutes. The angle, therefore, is 26° 34'.

Example 2. If A D = 20, and B D = 20, what will be the angle subtended by B D?

$$\frac{B}{A} \frac{D}{D} = \frac{20}{20} = 1.0000.$$

The natural tangent of 45° is 1.

NATURAL SINES, ETC.

Deg.	Sine.	Cover.	Cosecant	Tangent	Cotang.	Secant.	Versine.	Cosine.	Deg
0	.00	1.00000	Infinite.	.0	Infinite.	1.00000	,0	1,00000	90
I	.01745	.98254	57.2986	.01745	57.2899	1.00015	.0001	.99984	89
2	.03489	.96510		.03492	28.6362	1.00060	.0006	.99939	88
3	.05233		19.1073		19.0811	1.00137	.0013	.99862	87
4	.06975		14.3355 11.4737		14.3006 11.4300	1.00244 1.00381	.0024	.99756 .99619	86 85
56	.10452	.89547	9.5667	.10510		1.00351	.0030	.99019	84
	.12186	.87813	8.2055		.8.1443	I.00750	.0074	.99254	83
7 8	.13917	.86082	7.1852	.14054		1.00982	.0007	.99026	82
9	.15643	.84356	6.3924	.15838		1.01246	.0123	.98768	81
10	.17364	.82635	5.7587	.17632	5.6712	1.01542	.0151	.98480	80
II	. 19080	.80919	5.2408		5.1445	1.01871	.0183	.98162	79
12	.20791	.79208	4.8097	.21255	4-7046 4-3314	1.02234 1.02630	.0218 .0256	.97814 ·97437	78
13 14	.22495	·77504 .75807	4.1335	.23080	4.0107	1.02030	.0250	.97437 .9 7 029	77
15	.25881	.74118	3.8637	.26794	3.7320	1.03527	.0340	.96592	75
16	.27563	.72436		.28674	3.4874	1.04029	.0387	.96126	74
17	.29237	.70762	3.4203	.30573	3.2708	1.04569	.0436	.95630	73
18	.30901	.69098	3.2360	.32491	3.0776	1.05146	.0489	.95105	72
19	.32556	.67443	3.0715	•34432	2.9042	1.05762	.0544	.94551	71
20	.34202	.65797		.36397	2.7474	1.06417	.0603	.93969	70
21	.35836	.64163	2.7904		2.6050	1.07114 1.07853	.0664 .0728	.93358	69 68
22 23	.37460	.602539	2.5593	.40402	2.4750 2.3558	1.08636	.0720	.92718 .92050	67
24	.40673	.59326	2.4585	.44522	2.2460	1.00463	.0864	.91354	66
25	.42261	.57738	2.3662	.46630	2.1445	1.10337	.0936	.90630	65
26	.43837	.56162	2.2811	.48773	2.0503	1.11260	.1012	.89879	64
27	.45399	.54600		.50952	1.9626	1.12232	. 1089	.89100	63
28 29	.46947	.53052 .51519	2.1300 2.0626			1.13257 1.14335	.1170 .1253	.88294 .87461	62 61
-	.50000	.50000	2,0000			1.15470		.86602	60
30 31	.51503					1.16663	.1339 .1428	.85716	
32	.52991					1.17917	.1519	.84804	58
33	.54463	.45536	1.8360			1.19236	.1613	.83867	57
34	.55919	.44080		.67450		1.20621	.1709	.82903	56
35	.57357	.42642				1.22077	.1808	.81915	55
36	.58778	.41221		.72654		1.23606	. 1909	.80901	54
37 38	.60181 .61566	.39818	1.6616 1.6242			1.25213 1.26901	.2013	.79863	53
30 39	.62932	.38433 .37067	1.5890			1.28675	.2119 .2228	.78801	52 51
40 41	.64278	·35721 ·34394			1.1917	1.30540 1.32501	.2339 .2452	.76604	50
41	.66913	.33086				1.32501	.2452	·75470 ·74314	49 48
43	.68199	.31800			1.0723	1.36732	.2685	.73135	47
44	.69465	.30534	1.4395	.96568		1.39016	.2866	.71933	46
45	.70710	.29289	1.4142	1.00000	1.0000	1.41421	.2928	.70710	45
	Cosine.	Versine.	Secant.	Cotang.	Tangent	Cosecant.	Cover.	Sine.	

13*

CIRCUMFERENCES OF CIRCLES. Advancing by Eighths.

_			CIR	CUMFE	RENCE	s.		
Diam.	.0	•18	•‡	• 33	$\cdot \frac{1}{2}$	• <u>5</u>	•3	• 7/8
0	.0	.3927	.7 ⁸ 54	1.178	1.570	1.963	2.356	2.748
₹	3.141	3.534	3.927	4.319	4.712	5.105	5.497	5.890
2	6.283	6.675	7.063	7.461	7.854	8.246	8.639	9.032
3	9.424	9.817	10.21	10.60	10.99	11.38	11.78	12.17
4	12.56	12.95	13.35	13.74	14.13	14.52	14.92	15.31
5	15.70	16.10	16.49	16.88	17.27	17.67	18.06	18.45
6	18.84	19.24	19.63	20.02	20.42	20.81	21.20	21.59
7	21.99	22.38	22 77	23.16	23.56	23.95	24.34	24.74
8	25.13	25.52	25.91	26 31	26.70	27.09	27.48	27.88
9	28.27	28.66	29.05	29.45	29.84	30.23	30.63	31.02
10	31.41	31.80	32.20	32.59	32.98	33.37	33.77	34.16
11	34.55	34.95	35.34	35.73	36.12	36.52	36.91	37.30
12	37.69	38.09	38.48	38.87	39.27	39.66	40.05	40.44
13	40.84	41.23	41.62	42.01	42.41	42.80	43.19	43.58
14	43.98	44.37	44.76	45.16	45.55	45.94	46.33	46.73
15	47.12	47.51	47.90	48.30	48.69	49.08	49.48	49.87
16	50.26	50.65	51.05	51.44	51.83	52.22	52.62	53.01
17	53.40	53.79	54.19	54.58	54.97	55.37	55.76	56.15
18	56.54	56.94	57.33	57.72	58.11	58.51	58.90	59.29
19	59.69	60.08	60.47	60.86	61.26	61.65	62.04	62.43
20	62.83	63.22	63.61	64.01	64.40	64.79	65.18	65.58
21	65.97	66.36	66.75	67.15	67.54	67.93	68.32	68.72
22	69.11	69.50	69.90	70.29	70.68	71.07	71.47	71.86
23	72.25	72.64	73.04	73.43	73.82	74.22	74.61	75.00
24	75.39	75.79	76.18	76.57	76.96	77.36	77.75	78 14
25	78.54	78.93	7 9. 3 2	79.71	80.10	80.50	80.89	81.28
26	81.68	82.07	82.46	82.85	83.25	83.64	84.03	84.43
27	84.82	85.21	85.60	86.00	86.39	86.78	87.17	87.57
28	87.96	88.35	88.75	89.14	89.53	89.92	90.32	90.71
29	91.10	91.49	91.89	92.28	92.67	93.06	93.46	93.85
30	94.24	94.64	95.03	95.42	95.81	96.21	96.60	96.99
33 34	97.39 100.53 103.67 106.81 109.96	97.78 100.92 104.07 107.21 110.35	98.17 101.32 104.46 107.60 110.74	98.57 101.71 104.85 107.99 111.13	98.96 102.10 105.24 108.39 111.53	99.35 102.49 105.64 108.78 111.92	99.75 102.89 106.03 109.17 112.31	100.14 103.29 106.42 109.56 112.71
37 38 39	113.10 116.24 119.38 122.52 125 6 6	113.49 116.63 119.77 122.92 126.06	113.88 117.02 120.17 123.31 126.45	114.28 117.42 120.56 123.70 126.84	114.67 117.81 120.95 124.09 127.24	115.06 118.20 121.34 124.49 127 63	115.45 118.60 121.74 124.88 128.02	115.85 118.99 122.13 125.27 128.41
42 43 44	128.81 131.95 135.09 138.23 141.37	129.20 132.34 135.48 138.62 141.76	127.59 132.73 135 87 139.02 142.16	129.98 133.13 136.27 139.41 142.55	130.38 133.52 136.66 139 80 142.94	130.77 133.91 137.05 140.19 143.34	131.16 134.30 137.45 140.59 143.73	131.55 134.70 137.84 140.98 144.12

AREAS OF CIRCLES. Advancing by Eighths.

1	A R E A S.									
Diam.	.0	.18	$\cdot \frac{1}{4}$.8	$\cdot \frac{1}{2}$	· 58	• 34	• <u>7</u>		
0	.0	.0122	.0490	.1104	.1963	.3068	.4417	.6013		
1	.7854	.9940	1.227	1 484	1.767	2.073	2.405	2.761		
2	3.1416	3.546	3.976	4.430	4.908	5.411	5.939	6.491		
3	7.068	7.669	8.295	8.946	9.621	10.32	11.04	11 79		
4	12.56	13.36	14.18	15.03	15.90	16.80	17.72	18.66		
5	19.63	20.62	21.64	22.63	23.75	24.85	25.96	27.10		
6	28.27	29.46	30.67	31.91	33 18	34.47	35.78	37.12		
7	38 48	39.87	41.28	42.71	44.17	45.66	47.17	48.70		
8	50.26	51.84	53.45	55.08	56.74	58.42	60 13	61.86		
9	63.61	65.39	67.20	69.02	70.88	72.75	74.66	76.58		
10	7 ⁸ .54	80.51	82.51	84.54	86.59	88.66	90 76	92.88		
11	95.03	97.20	99.40	101.6	103.8	106.1	108.4	110.7		
12	113.0	115.4	117.8	120.2	122.7	125.1	127.6	130.1		
13	132.7	135.2	137.8	140.5	143.1	145.8	148.4	151.2		
14	153.9	156.6	159.4	162.2	165.1	167.9	170.8	173.7		
15	176.7	179.6	182.6	185.6	188.6	191.7	194.8	197.9		
16	201.0	204.2	207.3	210.5	213.8	217.0	220.3	223.6		
17	226.9	230.3	233 7	237.1	240 5	243.9	247.4	250 9		
18	254.4	258.0	261.5	265.1	268.8	272.4	276.1	2 7 9.8		
19	283.5	287.2	291.0	294.8	298.6	302.4	306.3	310.2		
20	314.1	318.1	322.0	326.0	330.0	334.1	338 1	342.2		
21	346.3	350.4	354 6	358.8	363.0	367.2	371.5	375.8		
22	380.1	384.4	388.8	393.2	397.6	402.0	406.4	410.9		
23	415.4	420.0	424.5	429.1	433.7	438.3	443.0	447.6		
24	452.3	457.1	461.8	466.6	471.4	476.2	481.1	485.9		
25	490.8	495.7	500.7	505.7	510.7	515.7	520.7	525 8		
26	530.9	536.0	541.1	546.3	551.5	556.7	562.0	567.2		
27	572.5	577.8	583.2	588.5	593.9	599.3	604.8	610.2		
28	615.7	621.2	626.7	632.3	637 9	643.5	649.1	654.8		
29	660.5	666.2	671.9	677.7	683.4	689.2	695.1	700.9		
30	706.8	712.7	718.6	7 ² 4.6	730.6	736.6	742.6	748.6		
31	754.8	760.9	767.0	773.1	779.3	785.5	791.7	798.0		
32	804.3	810.6	816.9	823 2	829.6	836.0	842.4	848.8		
33	855.3	861.8	868.3	874.9	881.4	888.0	894.6	901.3		
34	907.9	914.7	921.3	928.1	934.8	941.6	948.4	955.3		
35	962.1	969.0	975.9	982.8	989.8	996.8	1003.8	1010.8		
37 38 39	1017.9 1075.2 1134.1 1194.6 1256.6	1025.0 1082.5 1141.6 1202.3 1264.5	1032.1 1089.8 1149.1 1210.0 1272.4	1039.2 1097.1 1156.6 1217.7 1280.3	1046.3 1104.5 1164.2 1225.4 1288.2	1053 5 1111.8 1171 7 1233.2 1296.2	1060.7 1119.2 1179.3 1241.0 1304.2	1068.0 1126. 7 1186.9 1248.8 1312. 2		
42 43 44	1320.3 1385.4 1452.2 1520.5 1590.4	1328.3 1393.7 1460.7 1529.2 1599. 3	1336.4 1402.0 1469.1 1537.9 1608.2	1344.5 1410.3 1477.6 1546.6 1617 0	1352.7 1418 6 1486.2 1555 3 1626 0	1360 8 1427.0 1494.7 1564.0 1634.9	1369.0 1435.4 1503.3 1572.8 1643.9	1377.2 1443.8 1511.9 1581.6 1652.9		

SURVEYING MEASURE.

(LINEAL.)

Inches.	Feet.	Yards.	Chains.	Mile.
Ι.	= .0833	.0278	= .00126	= .0000158
I 2.	Ι.	•333	.01515	.000189
36.	3.	Ι.	.04545	.000568
792.	66.	22.	Ι.	.0125
63360.	5280.	1760.	80.	Ι.

One knot or geographical mile = 6086.07 feet = 1855.11 metres = 1.1526 statute mile.

One admiralty knot = 1.1515 statute miles = 6080 feet.

LONG MEASURE.

Inches.	F	eet. Ya	rds. Poles	. Furl.	Mile.
Ι.	= .03	83 = .02	778 = .005	=.000126	5 = .0000158
I2.	Ι.	.33	3.060	6 .00151	.0001894
36.	3.	Ι.	.182	.00454	.000568
198.	16½.	51/2.	Ι.	.025	.003125
7920.	660.	220.	40.	Ι.	.125
63360.	5280.	1760.	320.	8.	Ι.
A pal	m = 3	inches.	A hand :	= 4 inches	
A spa	n = 9i	inches.	A cable's	s length ==	120 fathoms.

FRENCH LONG MEASURE.

	Inches.	Feet.	Yards.	Miles.
Millimetre Centimetre Decimetre Metre Decametre Hectometre Kilometre Myriametre		.0033 .0328 .3280 3.2807 32807 328.07 328.07 3280.7 3280.7	.10936 1.09357 10 9357 109.357 1093.57 1093.57	.062134 .621346 6.213466

SQUARE MEASURE.

Inches.	Fee	et. Ya	rds. P	erches.	Acre.
Ι.	.006	94 = .00	0772=.00	000255=	=.000000159
144.	Ι.	.11	I	5367	.000023
1296.	-				.0002066
39204.	2724.	30¼.	Ι.		00625
6272640.	43560.	4840.	160.		1.
	100 squar	re feet	— I squa	ıre.	
	10 squar	re chains	= 1 acre	•	
	I chair	n wide	= 8 acre	s per mi	le.
			= 2.471		
		ſ	= 27,878	3 ,400 squ	lare feet.
	1 squar	e mile {	= 3,097	7,6 00 squ	uare feet. uare yards. res.
					es.
Acres	imes.oo		-		
	yard $ imes$.00				
Acres			= square		
Square y	ards $ imes$.00	002066	= acres.		
A section	of land is a	I mile sq	uare, and	contain	s 640 acres.
-					20×198 ft.
					10×198 ft.
A square 1	4 acre is IC	04.355 ft.	at each sid	de; or,	55 imes 198 ft.
А	circular	acre is 2	35. 50 4 ft.	in dian	neter.
А	circular 1/2	acre is I	66.527 ft.	. in dian	neter.

A circular 1/4 acre is 117.752 ft. in diameter.

FRENCH SQUARE MEASURE.

Square.	Square Inches.	Square Feet.	Square Yards.
Millimetre	.00154	.0000107	.00000.
Centimetre	.15498	.0010763	.000119
Decimetre	15.498	.1076305	.011958
Metre or Cen.	1549.8	10.76305	1.19589
Decametre	154988.	1076.305	119.589
Hectare		107630.58	11958 95
Kilometre	.38607□mls	10763058.	1195895.
Myriametre	38.607 "		

CUBIC MEASURE.

Inches.	Feet.	Yard.	Cubic Metres.
Ι.	.0005788	.000002144	.000016386
1728.	Ι.	.03704	.028315
46656.	27.	1.	.764513

A CUBIC FOOT IS EQUAL TO

1728	cubic inches.	29.92208 U. S. liquid quarts.
.037037	cubic yard.	25.71405 U. S. dry quarts.
.803564	U.S. struck bushel	59.84416 U.S. liquid pints.
	of 2150.42 cub. in.	51.42809 U. S. dry pints.
3.21426	U. S. pecks.	239.37662 U. S. gills.
7.48052	U. S. liquid gallons	.26667 flour barrel of 3
	of 231 cubic in.	struck bushels.
6.42851	U.S. dry gallons of	.23748 U. S. liquid barrel
	268.8025 cubic in.	of $31\frac{1}{2}$ gallons.

A cubic inch of water at 62° Fahr. weighs 252.458 grains. A cubic foot of water at 62° Fahr. weighs 1002.7 ounces. A cubic yard of water at 62° Fahr. weighs 1692. pounds.

FRENCH CUBIC OR SOLID MEASURE.

		Pint.	Quart.	Bush.	Cubic Inch.	Cu. Ft.
Centilitre {	Dry		••••		3.61016	
	Liquid				}.01010	
Decilitre {	Dry	.1816			6.1016	
Decimite	Liquid	.2113	.1056		} 0.1010	
Litre	Dry	1.816			\$ 61.016	0252
	Liquid	2.113	5		5 01.010	.0333
Decalitre {	Dry		-	.2837	\$ 610.16	2521
Decantre	Liquid	21.13	10.56		f 010.10	10.3331
Hectolitre {	Dry		90.8	2 8 3 7	\$ 6101.6	2 5 2 1
l	Liquid		105.6		, 0101.0	3.331
Kilolitre or f	Dry			28.37	61016	25 21
Cubic Metre }	Liquid		1056.5		<i>f</i> 01010.	33.3 %
Myriolitre 5	Dry			283.7	2	252 1
11 y 11 0 11 1 C }	Liquid		10565.		۶·····	233.1
Cubic Metre { Myriolitre {	Liquid Dry		1056.5	283.7	} 61016. }	

AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.

Ounce	es. Poun	ds. Quarter	s. Cwts.	Ton.
Ι.	06 2	25 = .00223	3 == .00055	8 == .000028
16.	Ι.	.0357	.00893	.000447
448.	28.	Ι.	.25	.0125
1792.	II2.	4.	Ι.	.05
35840.	2240.	80.	20.	Ι.

A drachm = 27.343 grains. A stone = 14 pounds. A quintal = 100 kilogrammes.

7000 grains = I avoir. pound = I.2I528 troy pounds. 5760 grains = I troy pound = .82285 avoir. pound.

Kilos p. sq. centim. \times 14.22 = Pounds p. sq. inch. Pounds p. sq. inch \times .0703 = Kilos p. sq. centim.

FRENCH WEIGHTS.

EQUIVALENT TO AVOIRDUPOIS.

	Grains.	Ounces.	Pounds.
Milligramme Centigramme Decigramme Gramme Decagramme Hectogramme Kilogramme Myriogramme Quintal Millier or Tonne.	.154331 I.54331 I54331 I54331 I54331 I54331 I54331	.000352 .003527 .035275 .352758 352758 352758 352758 352758 352758	.000022

84 820571

